JK Rowling’s next literary venture

Fans of Harry Potter won’t have to wait much longer for JK Rowling’s next literary venture. Her upcoming book is entitled The Casual Vacancy and the novel which is the writer’s first for adults, is about an idyllic town ripped apart by a parish council election which begins with the unexpected death of Barry Fairbrother, whose demise in his early 40s leaves a space on the parish council.

The 512-page novel is described as being a blackly comic, thought-provoking and constantly surprising’ and The Cover art, wich was released recently features a bold cover image with just a simple ballot box and cross on a red background. The Casual Vacancy is released September 27 2012 and is already set to be a bestseller with many shops already reporting big pre-order demands.

So far the Harry Potter books have sold more than 450 million copies and have been translated into 74 languages worldwide and The Casual Vacancy will be her first novel since the final Potter book was published in 2007.

Advertisements

Wimbledon 2012

Andy Murray returns to centre-stage this afternoon at Wimbledon, and will play David Ferrer in the quarter-final at Wimbledon  after making short work of Marin Cilic Both reached the final eight in style, Murray making short work of Croatian Marin Cilic, and Ferrer defeating Argentinian Juan Martín del Potro on Centre Court.6-3, 6-2, 6-3 , Roger FEDERER is also playing Russia’s M YOUZHNY on Centre Court this afternoon   Over on COURT NO 1 Serbia’s Novak DJOKOVIC is playing Germany’s F MAYER, and the French number five seed Jo-Wilfried TSONGA is playing the German number twenty seven seed P KOHLSCHREIBER. Meanwhile Venus and Serena Williams are both in action on Court Number 2 playing a doubles match against M KIRILENKO (Russia) & N PETROVA (Russia, 4

Meanwhile on Court 12 Lindsay Davenport (US) & Martina Hingis (Switzerland) are playing a doubles-match against I Majoli (Croatia) & N Zvereva (Belarus),

Higgs Boson

Scientists think they may have disccvered the Hggs Boson or so callled’God particle’ that gives mass to the universe, physicists at Cern, near Geneva, home of the Large Hadron Collider, have recently announced overwhelming evidence for the obscure but profoundly important Higgs boson, the particle that sparked the greatest hunt in modern science.Formal confirmation of the discovery is expected within months, though it could take several years for scientists to work out whether they have found the simplest kind of Higgs particle that theories predict, or part of a more complex picture: for example, one of a larger family of Higgs bosons. The discovery of more than one kind of Higgs particle would open the door to an entirely new realm of physics. The discovery of the Higgs particle ranks as one of the most important scientific advances of the past 100 years. It proves there is an invisible energy ooofield that pervades the vacuum of the known universe. This field is thought to give mass to the smallest building blocks of matter, the quarks and electrons that make up atoms. Without the field, or something like it, there would be no planets, stars, or life as we know it.

The Higgs Boson is named after Scientist Peter Higgs  who whilst at Edinburgh University was the first to point out in 1964 that a new particle, was a by-product of the mass-giving field. According to the theory, all of the particles in the newborn universe were massless and hurtled around at the speed of light. But one trillionth of a second after the big bang, the Higgs field switched on, turning the vacuum of space into a kind of cosmic glue. Some particles feel the Higgs field more than others. The quarks that make up atomic nuclei feel a lot of drag from the field, and become heavy for subatomic particles. Others, such as electrons, feel less drag and gain much less weight. Particles of light, called photons, feel no drag at all, and so remain massless and keep moving at the speed of light.

It is hoped that the discovery will open up a new era in particle physics, as we look for deviations from the properties expected in the Standard Model, and for other physics beyond the Standard Model that might be connected, such as the nature of dark matter.