Guglielmo Marconi

Often referred to as the father of long distance radio transmission, the Italian physicist and inventor, of the radio, wireless telegraphy and wireless signal system. Nobel Prize laureate Guglielmo Marconi, sadly passed away 20th July 1937. Born 25 April in 1874. He is often credited as the inventor of radio, and indeed he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun “in recognition of their contributions to the development of wireless telegraphy”. Much of Marconi’s work in radio transmission was built upon previous experimentation and the development of ideas by others such as Hertz, Maxwell, Faraday, Popov, Lodge, Fessenden, Stone, Bose, and Tesla.

As an entrepreneur, businessman, and founder of the The Wireless Telegraph & Signal Company in 1897, Marconi succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists. In 1924, he was ennobled as Marchese Marconi.TitanicMarconi’s development of the Radio Telegraph System has also helped save many lives too. One such device was aboard the RMS Titanic, and The two radio operators aboard the Titanic—Jack Phillips and Harold Bride— who were employed by the Marconi International Marine Communication Company, were able to send distress sgnals Following the collision with the ice berg.As a result survivors were rescued by the RMS Carpathia of the Cunard Line. Also employed by the Marconi Company was David Sarnoff, the only person to receive the names of survivors immediately after the disaster via wireless technology. Wireless communications were reportedly maintained for 72 hours between the Carpathia and Sarnoff, but Sarnoff’s involvement has been questioned by some modern historians. When the Carpathia docked in New York, Marconi went aboard with a reporter from The New York Times to talk with Bride, the surviving operator. On 18 June 1912, Marconi gave evidence to the Court of Inquiry into the loss of the Titanic regarding the marine telegraphy’s functions and the procedures for emergencies at sea. Britain’s postmaster-general summed up, referring to the Titanic disaster, “Those who have been saved, have been saved through one man, Mr. Marconi…and his marvelous invention.”

During his lifetime Marconi received many honours and awards for his invention. In 1909, Marconi shared the Nobel Prize in Physics with Karl Braun for his contributions to radio communications. In 1918, he was awarded the Franklin Institute’s Franklin Medal. In 1924, he was made a marquess by King Victor Emmanuel III., thus becoming Marchese Marconi. The Radio Hall of Fame (Museum of Broadcast Communications, Chicago) inducted Marconi soon after the inception of its awards. He was inducted into the New Jersey Hall of Fame in 2009. The Dutch radio academy bestows the Marconi Awards annually for outstanding radio programmes, presenters and stations; the National Association of Broadcasters (US) bestows the annual NAB Marconi Radio Awards also for outstanding radio programs and stations. Marconi was also inducted into the National Broadcasters Hall of Fame in 1977 and A commemorative British two pound coin was released in 2001 celebrating the 100th anniversary of Marconi’s first wireless communication as well as A commemorative silver 5 EURO coin whch was issued by Italy in 2009 honouring the centennial of Marconi’s Nobel Prize. A funerary monument to the effigy of Marconi can also be seen in the Basilica of Santa Croce, Florence but his remains are in Sasso, near Bologna.

Marconi’s early experiments in wireless telegraphy were also the subject of two IEEE Milestones; one in Switzerland in 2003 and in Italy in 2011. The premier collection of Marconi artifacts was held by The General Electric Company, p.l.c. (GEC) of the United Kingdom which later renamed to Marconi plc and Marconi Corporation plc. In December 2004 the extensive Marconi Collection, held at the former Marconi Research Centre at Great Baddow, Chelmsford, Essex UK was gifted to the Nation by the Company via the University of Oxford. This consisted of the BAFTA award-winning MarconiCalling website, some 250+ physical artifacts and the massive ephemera collection of papers, books, patents and many other items. The artifacts are now held by The Museum of the History of Science and the ephemera Archives by the nearby Bodleian Library. The latest release, following three years work at the Bodleian, is the Online Catalogue to the Marconi Archives, released in November 2008.

Ira Gershwin’s lyrics to “They All Laughed” include the line, “They told Marconi wireless was a phony.” The band Tesla references him in “Edison’s Medicine” lyrics: They’ll sell you on Marconi, familiar, but a phony.” The band Jefferson Starship references him in their song We Built This City. The lyrics say: “Marconi plays the mamba, listen to the radio”. The 1955 play Inherit the Wind by Jerome Lawrence and Robert E. Lee includes a reference to Marconi in scene 1. The 1979 play ‘The Man From Mukinupin’ by Dorothy Hewett makes several references to Marconi by the character The Flasher, who imagines he is communicating with Marconi through a box of matches. “Marconi the great one, speak to me!”, “Marconi, Marconi, must I kill?” and “Marconi says I must not frighten the ladies…” The Bermuda rig, developed in the 17th century by Bermudians, became ubiquitous on sailboats around the world in the 20th century. The tall masts and triangular fore-and-aft sails reminded some people of Marconi’s wireless towers, hence the rig became known also as the Marconi rig. A sculpture devoted to Marconi also resides in Washington, D.C.

Nikola Tesla

Nikola Tesla day, is celebrated annually on July 10 to mark the birth of Serbian-American inventor, electrical engineer, mechanical engineer, physicist, and futurist Nikola Tesla who was born 10 July 1856 Nikola Tesla in the village Smiljan, Lika county, Serbia and raised in the Austrian Empire. Tesla received an advanced education in engineering and physics in the 1870s and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. In 1881, Tesla moved to Budapest, Hungary, to work under Tivadar Puskás at a telegraph company, the Budapest Telephone Exchange. Upon arrival, Tesla realized that the company, then under construction, was not functional, so he worked as a draftsman in the Central Telegraph Office instead. Within a few months, the Budapest Telephone Exchange became functional, and Tesla was allocated the chief electrician and made many improvements to the Central Station equipment including the improvement of a telephone repeater or amplifier, which was never patented nor publicly described.

In 1882, Tivadar Puskás got Tesla another job in Paris with the Continental Edison Company.Tesla began working in what was then a brand new industry, installing indoor incandescent lighting citywide in the form of an electric power utility. The company had several subdivisions and Tesla worked at the Société Electrique Edison, the division in the Ivry-sur-Seine suburb of Paris in charge of installing the lighting system. There he gained a great deal of practical experience in electrical engineering. Management took notice of his advanced knowledge in engineering and physics and soon had him designing and building improved versions of generating dynamos and motors.They also sent him on to troubleshoot engineering problems at other Edison utilities being built around France and in Germany.

He emigrated to the United States in 1884, And got a job at the Edison Machine Works in New York City however he left in 1885 and began working on patenting an arc lighting system, In March 1885, he met with patent attorney Lemuel W. Serrell, the same attorney used by Edison, to obtain help with submitting the patents. Serrell introduced Tesla to two businessmen, Robert Lane and Benjamin Vail, who agreed to finance an arc lighting manufacturing and utility company in Tesla’s name, the Tesla Electric Light & Manufacturing. Tesla obtained patents for an improved DC generator,  which was installed in Rahway, New Jersey. Tesla new system gained notice in the technical press, which commented on its advanced features. However the Investors decided against Tesla’s idea and formed a new utility company, abandoning Tesla’s company and leaving the inventor penniless Tesla even lost control of the patents he had generated.

In 1886, Tesla met Alfred S. Brown, a Western Union superintendent, and New York attorney Charles F. Peck andbased on Tesla’s new idea’s for electrical equipment, including a thermo-magnetic motor idea,they agreed to back the inventor financially and handle his patents. Together they formed the Tesla Electric Company in1887, And set up a laboratory for Tesla at 89 Liberty Street in Manhattan. In 1887, Tesla developed an induction motor that ran on alternating current, a power system format that was rapidly expanding in Europe and the United States because of its advantages in long-distance, high-voltage transmission. The motor used polyphase current, which generated a rotating magnetic field to turn the motor. This innovative electric motor, patented in May 1888, was a simple self-starting design that did not need a commutator, thus avoiding sparking and the need for constantly servicing and replacing mechanical brushes. Physicist William Arnold Anthony tested the motor and Electrical World magazine editor Thomas Commerford Martin arranged for Tesla to demonstrate his alternating current motor on 16 May 1888 at the American Institute of Electrical Engineers. George Westinghouse was also working on a device similar device To Tesla’s polyphase induction motor and transformer and Westinghouse also hired Tesla for one year to be a consultant at the Westinghouse Electric & Manufacturing Company’s Pittsburgh labs. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company would eventually market.

In 1889, Tesla traveled to the 1889 Exposition Universelle in Paris and learned of Heinrich Hertz’ 1886–88 experiments that proved the existence of electromagnetic radiation, including radio waves. Tesla decided to explore it by repeating and then expanding on these experiments, Tesla tried powering a Ruhmkorff coil with a high speed alternator he had been developing as part of an improved arc lighting system but found that the high frequency current overheated the iron core and melted the insulation between the primary and secondary windings in the coil. To fix this problem Tesla came up with his Tesla coil with an air gap instead of insulating material between the primary and secondary windings and an iron core that could be moved to different positions in or out of the coil.

After 1890, Tesla experimented with transmitting power by inductive and capacitive coupling using high AC voltages generated with his Tesla coil. He attempted to develop a wireless lighting system based on near-field inductive and capacitive coupling and conducted a series of public demonstrations where he lit Geissler tubes and even incandescent light bulbs from across a stage. In 1893 at St. Louis, Missouri, the Franklin Institute in Philadelphia, Pennsylvania and the National Electric Light Association, Tesla told onlookers that he was sure a system like his could eventually conduct “intelligible signals or perhaps even power to any distance without the use of wires” by conducting it through the Earth. Tesla served as a vice-president of the American Institute of Electrical Engineers from 1892 to 1894, the forerunner of the modern-day IEEE (along with the Institute of Radio Engineers).

Tesla also conducted a range of experiments with mechanical oscillators/generators, electrical discharge tubes, and early X-ray imaging. He also built a wireless-controlled boat, one of the first ever exhibited. Tesla became well known as an inventor And Throughout the 1890s, Tesla experimented with wireless lighting and worldwide wireless electric power distribution in his high-voltage, high-frequency power experiments in New York and Colorado Springs. In 1893, he Worked on a device enabling wireless communication and tried to put these ideas to practical use in his unfinished Wardenclyffe Tower project, an intercontinental wireless communication and power transmitter.

After Wardenclyffe, Tesla went on to try and develop a series of inventions in the 1910s and 1920s with varying degrees of success. He is best known for his contributions to the design of the modern alternating current (AC) electricity supply system. Tesla gained experience in telephony and electrical engineering before emigrating to the United States in 1884 to work for Thomas Edison. He soon struck out on his own with financial backers, setting up laboratories/companies to develop a range of electrical devices. His patented AC induction motor and transformer were licensed by George Westinghouse, who also hired Tesla as a consultant to help develop apower system using alternating current. Tesla is also known for his high-voltage, high-frequency power experiments in New York and Colorado Springs which included patented devices and theoretical work used in the invention of radiocommunication, for his X-ray experiments, and for his ill-fated attempt at intercontinental wireless transmission in his unfinished Wardenclyffe Towerproject.

Tesla’s achievements and his abilities as a showman demonstrating his seemingly miraculous inventions made him world-famous.Although he made a great deal of money from his patents, he spent a lot on numerous experiments. He lived for most of his life in a series of New York hotels although the end of his patent income and eventual bankruptcy led him to live in diminished circumstances. Despite this Tesla still continued to invite the press to parties he held on his birthday to announce new inventions he was working and make (sometimes unusual) statements. Because of his pronouncements and the nature of his work over the years, Tesla gained a reputation in popular culture as the archetypal “mad scientist”.

Sadly Tesla passed away on 7 January 1943 in room 3327 of the New Yorker Hotel and his work fell into relative obscurity after his death, but since the 1990s, his reputation has experienced a comeback in popular culture. His work and reputed inventions are also at the center of many conspiracy theories and have also been used to support various pseudosciences, UFO theories and New Age occultism. In 1960, in honor of Tesla, the General Conference on Weights and Measures for the International System of Units dedicated the term “tesla” to the SI unit measure for magnetic field strength. There is also an Electric Car named after him.

World UFO Day

World UFO Day is celebrated annually on 2 July to commemorate the 1947 Roswell UFO Incident and to raise awareness of “the undoubted existence of UFOs” and to encourage governments to declassify their files on UFO sightings. It is also an opportunity for people to gather together and watch the skies for unidentified flying objects. The Oxford English Dictionary defines a UFO as “An unidentified flying object; a ‘flying saucer’.” The first published book to use the word was authored by Donald E. Keyhoe. The term “UFO” (or “UFOB”) was officially created in 1953 by the United States Air Force (USAF) to serve as a catch-all for all such reports. In its initial definition, the USAF stated that a “UFOB” was “any airborne object which by performance, aerodynamic characteristics, or unusual features, does not conform to any presently known aircraft or missile type, or which cannot be positively identified as a familiar object.” Accordingly, the term was initially restricted to that fraction of cases which remained unidentified after investigation, as the USAF was interested in potential national security reasons and/or “technical aspects”.

During the late 1940s and through the 1950s, UFOs were often referred to popularly as “flying saucers” or “flying discs”. The term UFO became more widespread during the 1950s, at first in technical literature, but later in popular use. UFOs garnered considerable interest during the Cold War, an era associated with a heightened concern for national security, and, more recently, in the 2010s, for unexplained reasons. Nevertheless, various studies have concluded that the phenomenon does not represent a threat to national security, nor does it contain anything worthy of scientific pursuit (e.g., 1951 Flying Saucer Working Party, 1953 CIA Robertson Panel, USAF Project Blue Book, Condon Committee).

The acronym “UFO” was coined by Captain Edward J. Ruppelt, who headed Project Blue Book, then the USAF’s official investigation of UFOs. He wrote, “Obviously the term ‘flying saucer’ is misleading when applied to objects of every conceivable shape and performance. For this reason the military prefers the more general, if less colorful, name: unidentified flying objects. UFO (pronounced Yoo-foe) for short.” Other phrases that were used officially and that predate the UFO acronym include “flying flapjack”, “flying disc”, “unexplained flying discs”, “unidentifiable object”, and “flying saucer”

The phrase “flying saucer” also gained widespread attention after the summer of 1947. When On June 24, a civilian pilot named Kenneth Arnold reported seeing nine objects flying in formation near Mount Rainier. Arnold timed the sighting and estimated the speed of discs to be over 1,200 mph (1,931 km/h). At the time, he claimed he described the objects flying in a saucer-like fashion, leading to newspaper accounts of “flying saucers” and “flying discs”. Consequently many people celebrate World UFO Day on 24 June, the anniversary of the sighting.

The term UFO came to be used to refer to claims of alien spacecraft but because of the public and media ridicule associated with the topic, some investigators prefer to use such terms as unidentified aerial phenomenon (or UAP) or anomalous phenomena, as in the title of the National Aviation Reporting Center on Anomalous Phenomena (NARCAP).

The Roswell UFO incident happened 2.July 1947, after a United States Air Force surveillance balloon crashed at a ranch near Roswell, New Mexico, prompting claims alleging the crash was of an extraterrestrial spaceship. After an initial spike of interest, the military reported that the crash was merely of a conventional weather balloon. Interest subsequently waned until the late 1970s when ufologists began promulgating a variety of increasingly elaborate conspiracy theories, claiming that one or more alien spacecraft had crash-landed, and that the extraterrestrial occupants had been recovered by the military who then engaged in a cover-up. In the 1990s, the US military published reports disclosing the true nature of the crashed Project Mogul balloon (that’s what the US military want you to believe). Nevertheless, the Roswell incident continues to be of interest in popular media, and conspiracy theories surrounding the event persist.

Thomas Savery

On 2 July 1698, English inventor Thomas Savery patented an early steam engine for raising water and allowing motion to all sorts of mill work by the impellent force of fire, which will be of great use and advantage for draining mines, serving towns with water, and for the working of all sorts of mills which don’t have water or constant winds. He demonstrated it to the Royal Society on 14 June 1699. The patent has no illustrations or even description, but in 1702 Savery described the machine in his book The Miner’s Friend; or, An Engine to Raise Water by Fire, in which he claimed that it could pump water out of mines. Savery’s engine had no piston, and no moving parts except from the taps. It was operated by first raising steam in the boiler; the steam was then admitted to the working vessel, allowing it to blow out through a downpipe into the water that was to be raised. When the system was hot and therefore full of steam the tap between the boiler and the working vessel was shut, and if necessary the outside of the vessel was cooled. This made the steam inside it condense, creating a partial vacuum, and atmospheric pressure pushed water up the downpipe until the vessel was full.

At this point the tap below the vessel was closed, and the tap between it and the up-pipe opened, and more steam was admitted from the boiler. As the steam pressure built up, it forced the water from the vessel up the up-pipe to the top of the mine.However, his engine hadfour serious problems. First, every time water was admitted to the working vessel much of the heat was wasted in warming up the water that was being pumped. Secondly, the second stage of the process required high-pressure steam to force the water up, and the engine’s soldered joints were barely capable of withstanding high pressure steam and needed frequent repair. Thirdly, although this engine used positive steam pressure to push water up out of the engine (with no theoretical limit to the height to which water could be lifted by a single high-pressure engine) practical and safety considerations meant that in practice, to clear water from a deep mine would have needed a series of moderate-pressure engines all the way from the bottom level to the surface. Fourthly, water was pushed up into the engine only by atmospheric pressure (working against a condensed-steam ‘vacuum’), so the engine had to be no more than about 30 feet (9.1 m) above the water level – requiring it to be installed, operated, and maintained far down in the mine.

Savery’s original patent of July 1698 gave 14 years’ protection; the next year, 1699, an Act of Parliament was passed which extended his protection for a further 21 years. This Act became known as the “Fire Engine Act”. Savery’s patent covered all engines that raised water by fire, and it thus played an important role in shaping the early development of steam machinery in the British Isles.The architect James Smith of Whitehill acquired the rights to use Savery’s engine in Scotland. In 1699, he entered into an agreement with the inventor, and in 1701 he secured a patent from the Parliament of Scotland, modeled on Savery’s grant in England, and designed to run for the same period of time. Smith described the machine as “an engyne or invention for raiseing of water and occasioning motion of mill-work by the force of fire”, and he claimed to have modified it to pump from a depth of 14 fathoms, or 84 feet. In England, Savery’s patent meant that Thomas Newcomen was forced to go into partnership with him.

By 1712, arrangements had been between the two men to develop Newcomen’s more advanced design of steam engine, which was marketed under Savery’s patent. Newcomen’s engine worked purely by atmospheric pressure, thereby avoiding the dangers of high-pressure steam, and used the piston concept invented in 1690 by the Frenchman Denis Papin to produce the first steam engine capable of raising water from deep mines. After his death in 1715 Savery’s patent and Act of Parliament became vested in a company, The Proprietors of the Invention for Raising Water by Fire. This company issued licences to others for the building and operation of Newcomen engines, charging as much as £420 per year patent royalties for the construction of steam engines. In one case a colliery paid the Proprietors £200 per year and half their net profits “in return for their services in keeping the engine going”.The Fire Engine Act did not expire until 1733, four years after the death of Newcomen.

A newspaper in March 1702 announced that Savery’s engines were ready for use and might be seen on Wednesday and Saturday afternoons at his workhouse in Salisbury Court, London, over against the Old Playhouse.One of his engines was set up at York Buildings in London. According to later descriptions this produced steam ‘eight or ten times stronger than common air’ (i.e. 8-10 atmospheres), but blew open the joints of the machine, forcing him to solder the joints with spelter. Another was built to control the water supply at Hampton Court, while another at Campden House in Kensington operated for 18 years.A few Savery engines were tried in mines, an unsuccessful attempt being made to use one to clear water from a pool called Broad Waters in Wednesbury (then in Staffordshire) and nearby coal mines. This had been covered by a sudden eruption of water some years before. However the engine could not be ‘brought to answer’. The quantity of steam raised was so great as ‘rent the whole machine to pieces’. The engine was laid aside, and the scheme for raising water was dropped as impracticable. This may have been in about 1705.Another engine was proposed in 1706 by George Sparrow at Newbold near Chesterfield, where a landowner was having difficulty in obtaining the consent of his neighbours for a sough to drain his coal. Nothing came of this, perhaps due to the explosion of the Broad Waters engine. It is also possible that an engine was tried at Wheal Vor, a copper mine in Cornwall. Several later pumping systems may be based on Savery’s pump. For example, the twin-chamber pulsometer steam pump was a successful development of it.

Alan Turing OBE FRS

British  mathematician, logician, cryptanalyst, and computer scientist Alan Turing OBE, FRS was Born June 23rd, 1912 in Maida Vale, and grew up in Hastings. He displayed great individuality from a young age. At 14 he went to Sherborne School in Dorset. Turing read mathematics at Cambridge, he was a completely original thinker who shaped the modern world, and assisted in the development of the innovative Manchester computers. He was also highly influential in the development of computer science, providing a formalisation of the concepts of “algorithm” and “computation” with the Turing machine, which played a sinificant role in the creation of the modern computer. Turing is widely considered to be the father of computer science and artificial intelligece.He also became interested in mathematical biology and wrote a paper on the chemical basis of morphogenesis, and predicted oscillating chemical reactions such as the Belousov–Zhabotinsky reaction, which were first observed in the 1960s.

On 4 September 1939 the day after Britain declared war on Germany, Turing reported to Bletchley Park where he worked for the Government Code and Cypher School (GCCS)the forerunner of GCHQ, Britain’s codebreaking centre. For a time he was head of Hut 8, the section responsible for German naval cryptanalysis. Turing led a team whose ingenuity and intellect were turned to the task of breaking German ciphers. He devised a number of techniques for breaking German ciphers and One of Turing’s main contributions whilst there was to invent the Bombe, an electromechanical machine used to find the daily settings of the Enigma machine. as a result he played an absolutely vital part of the British war effort and It is without question that his efforts helped shorten the war significantly, saving the lives of millions of people.He was also a remarkable British hero who helped create the modern world. Now known as the father of computer science, his inventions contributed greatly to the groundwork for the modern computer.

After the war he worked at the National Physical Laboratory, where he created one of the first designs for a stored-program computer, the ACE. In 1948 Turing joined Max Newman’s Computing Laboratory at Manchester University, where he assisted in the development of the Manchester computers and invented a type of theoretical machine now called a Turing Machine, which formalized what it means to compute a number. Turing’s importance extends far beyond Turing Machines. His work deciphering secret codes drastically shortened World War II and pioneered early computer technology.He was also an early innovator in the field of artificial intelligence, and came up with a way to test if computers could think – now known as the Turing Test. Besides this abstract work, he was down to earth; he designed and built real machines, even making his own relays and wiring up circuits. This combination of pure math and computing machines was the foundation of computer science.

Despite his invaluable help during World War II AND all his other achievements, he was treated badly. A burglary at his home led Turing to admit to police that he was a practicing homosexual, at a time when it was illegal in Britain. This led to his arrest and conviction in 1952 for ‘gross indecency’. He was subsequently forced to choose between imprisonment and chemical castration. He chose chemical castration (treatment with female hormones) as an alternative to prison. As a result of his conviction he lost security clearance and was not allowed to continue his work, and Sadly On 8 June 1954 Turing committed suicide just over two weeks before his 42nd birthday.

Luckily since Turing’s birth, attitudes have changed towars homosexuality and The US-based Association of Computing Machinery has given The Turing Award annually since 1966. This is the computing world’s highest honour for technical contribution to the computing community and considered equivalent to the Nobel prize.On 10 September 2009, following an Internet campaign, British Prime Minister Gordon Brown also made an official public apology on behalf of the British government for “the appalling way he was treated”. Despite his valuable contributions Turing did not receive the recognition and plaudits that he deserved while alive, However this has now been redressed and there is now A fully functional replica of the Bombe which can be found today at Bletchley Park, along with the excellent Turing exhibition. Turing has also been immortalised on film in The Imitation Game starring Benedict Cumberbatch.

Edward Davy

English physician, scientist, and inventor Edward Davy was born 16 june 1806, he played a prominent role in the development of telegraphy, and invented an electric relay. Davy was born in Ottery St Mary, Devonshire, England and was educated at a school run by his maternal uncle in Tower Street, London. He was then apprenticed to Dr Wheeler, house surgeon at St Bartholomew’s Hospital. Davy won the prize for botany in 1825, was licensed by the Worshipful Society of Apothecaries in 1828 and the Royal College of Surgeons in 1829. Soon after graduating, Davy began trading as an operative chemist under the name of Davy & Co. In 1836 he published a small book Experimental Guide to Chemistry, at the end of which was a catalogue of goods supplied by his firm.

Davy published Outline of a New Plan of Telegraphic Communication in 1836 and carried out telegraphic experiments the following year. He demonstrated the operation of the telegraph over a mile of wire in Regent’s Park.In 1837 he demonstrated a working model of the telegraph in Exeter Hall. He was granted a patent for his telegraph in 1838. However, he was soon obliged to drop his investigations of telegraphy for personal reasons. His patent was purchased by the Electric Telegraph Company in 1847 for £600. Davey also invented an electric relay. He used a magnetic needle which dipped into a mercury contact when an electric current passed through the surrounding coil.

In recognition of his work he was elected in 1885 as an honorary member of the Society of Telegraph Engineers and was informed of this by telegraph shortly before his death. In 1838 Davy migrated to South Australia without his first wife and son. He became editor of the Adelaide Examiner from June to July 1842 and was elected president of the Port Adelaide Mechanics’ Institute at its inaugural meeting in 1851. Davy was also a director and manager of the Adelaide Smelting Company and became chief assayer of the Government Assay Office in Adelaide in February 1852. Davy was also appointed assay master in Melbourne in July 1853 until the office was abolished in October 1854. For a short while, he took up farming near Malmsbury, Victoria then moved into Malmsbury where he practised as a physician for the rest of his life. He was three times mayor of Malmbury. Davy sadly passed away 26 January 1885

World Blood Doner day

World Blood Doner day takes place annually on 14 June on the birthday anniversary of Austrian Biologist, physician and Scientist Karl Landsteiner who was born on 14 June in 1868, And distinguished the main blood groups in 1900, having developed the modern system of classification of blood groups from his identification of the presence of agglutinins in the blood, and identified, with Alexander S. Wiener, the Rhesus factor, in 1937, thus enabling physicians to transfuse blood without endangering the patient’s life. He also discovered the polio virus in 1909 With Constantin Levaditi and Erwin Popper, . He received the Aronson Prize in 1926. In 1930, he received the Nobel Prize in Physiology or Medicine. He was posthumously awarded the Lasker Award in 1946, and has been described as the father of transfusion medicine.

The aim of World Blood Doner Day is to raise awareness of the need for safe blood and blood products, and to thank blood donors for their voluntary, life-saving gifts of blood which helps save millions of lives every year. The transfusion of blood can help patients suffering from life-threatening conditions live longer and with higher quality of life, and supports complex medical and surgical procedures. It also has an essential, life-saving role in maternal and perinatal care. Access to safe and sufficient blood and blood products can help reduce rates of death and disability due to severe bleeding during delivery and after childbirth. In many countries, there is not an adequate supply of safe blood, and blood services face the challenge of making sufficient blood available, while also ensuring its quality and safety. An adequate supply can only be assured through regular donations by voluntary unpaid blood donors. The WHO’s goal is for all countries to obtain all their blood supplies from voluntary unpaid donors by 2020. It emphasizes thanking of blood donors who save lives every day through their blood donations and inspires more people all over the world to donate blood voluntarily and regularly with the slogan “Give freely, give often. Blood donation matters.” Many lives (including mine) have been saved thanks to blood transfusions.

Activities include special events, meetings, publication of relevant stories on media, scientific conferences, publication of articles on national, regional and international scientific journals, and other activities that would help in encouraging the title of this year’s World Blood Donor Day. The host country for World Blood Donor Day 2015 is China through its blood center in Shanghai, Shanghai Blood Centre, also the WHO Collaborating Center for Blood Transfusion Services. The focus of the WBDD 2014 campaign was “Safe blood for saving mothers”. The goal of the campaign was to increase awareness about why timely access to safe blood and blood products is essential for all countries, as part of a comprehensive approach to prevent maternal deaths. According to the World Health Organization, 800 women die every day from pregnancy and childbirth-related complications. Severe bleeding is the cause of 34% of maternal deaths in Africa, 31% in Asia and 21% in Latin America and the Caribbean. The global host for the WBDD 2014 event was Sri Lanka. Through its national blood transfusion service, Sri Lanka promotes voluntary unpaid donation to increase access to safe and sufficient blood and blood products.

The host country for World Blood Donor Day 2013 was France. Through its national blood service, the Etablissement Français du Sang (EFS), France has been promoting voluntary non-remunerated blood donation since the 1950s. The focus for the WBDD 2013 campaign – which marked the 10th anniversary of World Blood Donor Day – was blood donation as a gift that saves lives. The WHO encouraged all countries to highlight stories from people whose lives have been saved through blood donation, as a way of motivating regular blood donors to continue giving blood and people in good health who have never given blood, particularly young people, to begin doing so. The 2012 campaign focused on the idea that any person can become a hero by giving blood. Blood cannot yet be manufactured artificially, so voluntary blood donation remains vital for healthcare worldwide. Many anonymous blood donors save lives every day through their blood donations.

World Blood Donor Day is one of eight official global public health campaigns marked by the World Health Organization (WHO), along with World Health Day, World Tuberculosis Day, World Immunization Week, World Malaria Day, World No Tobacco Day, World Hepatitis Day, and World AIDS Day.