Fred Dibnah

Charismatic Engineer, Steeplejack and British television personality Fred Dibnah was Born 28th April 1938. As a child, Dibnah was fascinated by the steam engines which powered the many textile mills in his home town of Bolton and developed a keen interest in mechanical engineering, Steam Engines and chimneys and the men who worked on them. He began his working life as a joiner, before becoming a steeplejack. From age 22, he served for two years in the armed forces, as part of his national service. Once demobilised, he returned to steeplejacking but met with limited success until he was asked to repair Bolton’s parish church. The resulting publicity provided a welcome boost to his business, ensuring he was almost never out of work.

Dibnah’s interest in steam power stemmed from his childhood observations of the steam locomotives on the nearby railway line, and his visits to his father’s workplace—a bleach works in Bolton—where he was fascinated by the steam engines used to drive the line shafting. He later became a steam enthusiast, befriending many of the engine drivers and firemen who worked on the nearby railway. As a teenager he met a driver who invited him onto the footplate of his locomotive and who asked him to keep the boiler supplied with fuel. Dibnah became so enamoured with steam engines that he eventually looked for one he could buy. He learnt of a steamroller kept in a barn near Warrington and which the owners had bought from Flintshire County Council. He had the boiler pressure-tested and, despite it being in poor condition, bought it for £175. He towed it to a friend’s house, spent a fortnight making various repairs and drove it to his mother’s house in Bolton.

After he married and bought his own property on Radcliffe new Road, he cut an access road to the garden of his new house and moved the steamroller there. Restoring the engine took many years, as Dibnah had to create his own replacement parts, using Victorian engineering techniques and equipment he built in his garden. The boiler was in poor condition and needed serious work, but Dibnah used local knowledge and was eventually able to build a new boiler. Once restored, he used the 1910 Aveling & Porter steamroller together with a living van he bought and restored, to take his family around the local steam fairs In 1978, while making repairs to Bolton Town Hall, Dibnah was filmed by a regional BBC news crew. The BBC then commissioned an award-winning documentary, which followed the rough-hewn steeplejack as he worked on chimneys, interacted with his family and talked about his favourite hobby—steam.

He made many more Television programmes about Steam Engines & Locomotives and In 1998, he presented a programme on Britain’s industrial history and went on to present a number of fascinating series, largely concerned with the Industrial Revolution and its mechanical and architectural legacy. In mid-2000, Dibnah was awarded an honorary degree of Doctor of Technology for his achievement in engineering by Robert Gordon University in Aberdeen, and on 19 July 2004 he was made an honorary Doctor of the University by the University of Birmingham. He was also awarded an MBE for services to heritage and broadcasting. He said “I’m looking forward to meeting the Queen but I shall probably have to get a new cap. And I’d like to meet Prince Charles because we share the same views about modern architecture.”On 7 July 2004, Dibnah went to Buckingham Palace to receive his award from the Queen.

Sadly Fred’s health was failing at this point although filming continued at various locations around the country, with sons Jack and Roger, who had become essential members of the tour, providing much-needed support for their father. By the end of July, the crew had filmed only 34 days with Dibnah, out of a planned 60. It was becoming more difficult by the day for Dibnah to fulfil his filming duties and the crew decided to cut short the schedule and he died shortly after on 7 November 2004 and is sadly missed. He is survived by his five children from three marriages.


Anniverary of the Rainhill Trials

Sans Pereil

Stephenson’s locomotive “Rocket” won the Rainhill Trials On 8 October 1829 . Stephenson’s Rocket was an early steam locomotive of 0-2-2 wheel arrangement, built in 1829 at the Forth Street Works of Robert Stephenson and Company in Newcastle Upon Tyne, specially for the Rainhill Trials held by the Liverpool & Manchester Railway in 1829 to choose the best design to power the railway. Though the Rocket was not the first steam locomotive, it brought together several innovations to produce the most advanced locomotive of its day and became the template for most steam engines in the following 150 years. It had a tall smokestack chimney at the front, a cylindrical boiler in the middle, and a separate firebox at the rear. The large front pair of wooden wheels was driven by two external cylinders set at an angle. The smaller rear wheels were not coupled to the driving wheels, giving an 0-2-2 wheel arrangement. As the first railway intended for passengers more than freight, the rules emphasised speed and would require reliability, but the weight of the locomotive was also tightly restricted. Six-wheeled locomotives were limited to six tons, four-wheeled locomotives to four and a half tons. In particular, the weight of the train expected to be hauled was to be no more than three times the actual weight of the locomotive.

Stephenson realised that whatever the size of previously successful locomotives, this new contest would favour a fast, light locomotive of only moderate hauling power. His most visible decision was to use a single pair of driving wheels, with a small carrying axle behind giving a 0-2-2 arrangement. The use of single drivers gave several advantages. The weight of coupling rods was avoided and the second axle could be smaller and lightweight, as it only carried a small proportion of the weight. Rocket placed 2½ tons of its 4¼ ton total weight onto its driving wheels,a higher axle load than the rival locomotive Sans Pareil, even though the 0-4-0 was heavier overall at 5 ton, and officially disqualified by being over the 4½ ton limit. Stephenson’s past experience convinced him that the adhesion of the locomotive’s driving wheels would not be a problem, particularly with the light trains of the trials contest. Rocket uses a multi-tubular boiler design. Previous locomotive boilers consisted of a single pipe surrounded by water. Rocket has 25 copper fire-tubes that carry the hot exhaust gas from the firebox, through the wet boiler to the blast pipe and chimney. This arrangement resulted in a greatly increased surface contact area of hot pipe with boiler water when compared to a single large flue. Additionally, radiant heating from the enlarged separate firebox helped deliver a further increase in steaming and hence boiler efficiency.The advantages of the multiple-tube boiler were quickly recognised, even for heavy, slow freight locomotives. By 1830, Stephenson’s past employee Timothy Hackworth had re-designed his return-flued Royal George as the return-tubed Wilberforce class.

Rocket also used a blastpipe, feeding the exhaust steam from the cylinders into the base of the chimney so as to induce a partial vacuum and pull air through the fire. .the blastpipe worked well on the multi-tube boiler of Rocket but on earlier designs with a single flue through the boiler it had created so much suction that it tended to rip the top off the fire and throw burning cinders out of the chimney, vastly increasing the fuel consumption. Like the Lancashire Witch, Rocket had two cylinders set at angle from the horizontal, with the pistons driving a pair of 4 ft 8.5 in (1.435 m) diameter wheels. Most previous designs had the cylinders positioned vertically, which gave the engines an uneven swaying motion as they progressed along the track. Subsequently Rocket was modified so that the cylinders were set close to horizontal, a layout that influenced nearly all designs that followed. The cylinders were also connected directly to the driving wheels, an arrangement which is found in all subsequent steam locomotives.The firebox was separate from the boiler and was double walled, with a water jacket between them. This firebox was heated by radiant heat from the glowing coke, not just convection from the hot exhaust gas.Locomotives of Rocket’s era were fired by coke rather than coal. Local landowners were already familiar with the dark clouds of smoke from coal-fired stationary engines and had imposed regulations on most new railways that locomotives would ‘consume their own smoke’. The smoke from a burning coke fire was much cleaner than that from coal. It was not until thirty years later and the development of the long firebox and brick arch that locomotives would be effectively able to burn coal directly.Rocket’s first firebox was of copper sheet and of a somewhat triangular shape from the side. The throatplate was of firebrick, possibly the backhead too.

When the Liverpool and Manchester Railway was approaching completion, the directors of the railway ran a competition to decide whether stationary steam engines or locomotives would be used to pull the trains. So the Rainhill Trials were run in October 1829 in Rainhill,Lancashire (now Merseyside) they featured several tests for each locomotive which were performed over the course of several days.The Rainhill stretch of the Railway was very level for a mile or so: a perfect site for the Trials .. The Rainhill Trials were arranged as an open contest that would let them see all the locomotive candidates in action, with the choice to follow. Regardless of whether or not locomotives were settled upon, a prize of £500 was offered to the winner of the trials. Three notable figures from the early days of engineering were selected as judges: John Urpeth Rastrick, a locomotive engineer of Stourbridge, Nicholas Wood, a mining engineer from Killingworth with considerable locomotive design experience and John Kennedy, a Manchester cotton spinner and a major proponent of the railway Locomotives were run two or three per day, and several tests for each locomotive were performed over the course of several days.The Rainhill stretch of the Railway was very level for a mile or so: a perfect site for the Trials.

The locomotive Cycloped was the first to drop out of the competition. Built with “legacy technology”, it used a horse walking on a drive belt for power, and was withdrawn after an accident caused the horse to burst through the floor of the engine.Next to retire was Perseverance. Damaged en route to the competition, Burstall spent five days repairing it. When it failed to reach the required 10 miles per hour (16 km/h) on its first tests the next day, it was withdrawn from the trial. It was granted a £26 consolation prize.Sans Pareil nearly completed the trials, though at first there was some doubt as to whether it would be allowed to compete as it was 300 pounds (140 kg) overweight. However, it did eventually complete eight trips before cracking a cylinder. Despite the failure it was purchased by the Liverpool & Manchester, where it served for two years before being leased to theBolton and Leigh Railway.The last engine to take part was Novelty. In complete contrast to Cycloped it was cutting-edge for 1829, lighter and considerably faster than the other locomotives in the competition. It was accordingly the crowd favourite. Reaching a then-astonishing 28 miles per hour (45 km/h) on the first day of competition, it later suffered some damage to a boiler pipe which could not be fixed properly on site in the time allotted. Nevertheless it continued its run on the next day, but upon reaching 15 mph the pipe gave way again and damaged the engine severely enough that it had to drop out.So, the Rocket was the only locomotive to complete the trials. It averaged 12 miles per hour (19 km/h) (achieving a top speed of 30 miles per hour (48 km/h)) hauling 13 tons, and was declared the winner of the £500 prize. The Stephensons were accordingly given the contract to produce locomotives for the Liverpool & Manchester Railway.

In 1980 the Rocket 150 celebration was held to mark the 150th Anniversary of the trials. A replica of Novelty was built for the event, which was also attended by replicas of Sans Pareil and Rocket (plus coach).The Rocket replica bent its axle in Bold Colliery railway sidings during the event and was exhibited on a low loader carriage.The event was also attended by:Lion, at the time of Rocket 150 the oldest operable steam locomotive in existence. Flying Scotsman No. 4472, LMS 4-6-0 Jubilee class No. 5690 Leander, Sir Nigel Gresley No. 4498, GWR 0-6-0 No. 3205, lMS Class 4 MT 2-6-0 No 43106, BR 92220 Evening Star, the last steam locomotive to be built by British Railways,LMS 4-6-2 Princess Elizabeth No. 6201, Class 86 locomotives 86214, Sans Pareil and 86235. In a recent (2002) restaging of the Rainhill Trials using replica engines, neither Sans Pareil nor Novelty completed the course. In calculating the speeds and fuel efficiencies, it was found that Rocket would still have won, as its relatively modern technology made it a much more reliable locomotive than the others. Novelty almost matched it in terms of efficiency, but its firebox design caused it to gradually slow to a halt due to a build up of molten ash (called “clinker”) cutting off the air supply. The restaged trials were run over a section of line in Llangollen, Wales, and were the subject of a BBC Timewatch documentary.

Stockton and Darlington Railway

The world’s first public passenger railway, The Stockton and Darlington Railway (S&DR) in north-eastern England was Opened September 27 1825, it was built between Witton Park and Stockton-on-Tees via Darlington and connected to several collieries near Shildon. 26 miles (40 km) long, it was also the world’s longest railway line at the time. Planned to carry both goods and passengers, the line was initially built to connect inland coal mines to Stockton, where coal was to be loaded onto seagoing boats. Over the next 38 years the S&DR steadily expanded into a substantial network serving south and west Durham, Cleveland and Westmorland and running trains across Cumberland to within a few miles of the west coast. It was taken over by the North Eastern Railway in 1863, but by agreement continued to operate independently for a further 10 years. Much of the original 1825 route is now served by the Tees Valley Line, operated by Northern Rail.

At the time steam locomotives were a new and unproven technology and were slow, expensive and unreliable. The initial impetus for steam power had come during the Napoleonic Wars, when horse fodder had become very expensive and had still not settled down, while improving transport and mining methods was making coal more plentiful. However, many people weren’t convinced that steam engines were a viable alternative to the horse. So at first, horse traction predominated on the S&DR, until steam could prove its worth. The first locomotive to run on the S&DR was Locomotion No 1, built at the Stephenson works though, in the absence of Robert, Timothy Hackworth had been brought in from Wylam. (On Robert’s return he took charge of maintenance at the S&DR’s Shildon’s Soho works.)Locomotion No 1 used coupling rods rather than gears between the wheels, the first to do so. The official opening of the line was on 27 September 1825. The first passenger train took two hours to complete the first 12 miles (19 km) of the journey and most of 600 passengers sat in open coal wagons while one experimental passenger coach, resembling a wooden shed on wheels and called “The Experiment”, carried various dignitaries.

An experimental regular passenger service was soon established, initially a horse-drawn coach with horse provided by the driver. While passenger carrying was contracted out, locomotive coal trains were either paid by the ton, contractors providing their own fuel, which meant they tended to use the cargo, or by fixed wages, which meant they did not bother to economise.Three more engines were built similar to Locomotion then, in 1826, Stephenson introduced the “Experiment” with inclined cylinders, which meant that it could be mounted on springs. Originally four wheeled, it was modified for six. Not all engines came from Stephenson. In 1826 also, Wilson, Robert and Company, of Newcastle, produced one for the line which, rather than use coupling rods, had four cylinders, two to each pair of wheels. Possibly because of its unusual exhaust beat, it became known as Chittaprat. After suffering a collision it was not rebuilt. These early locomotives were slow and unreliable and Hackworth set out to produce an improved design and in 1827 introduced the Royal George, salvaging the boiler from the Wilson engine. He also invented a spring-loaded safety valve, because drivers had been tying them down to prevent them opening when the loco went over a bump. Steam traction was expensive in comparison to horse drawn traffic, but it soon proved that it was viable and economic. Steam locomotives could haul more wagons and haul them faster, so in a typical working day the expensive steam engine could haul more coal than the cheaper horse. It soon became apparent that mixing faster steam-hauled and slower horse-drawn traffic was slowing the operation down and so as steam technology became more reliable, horse-drawn traffic was gradually abandoned.

At first, the organisation of the S&DR bore little relation to that of most modern railways and was run in the traditional manner of the wagonways of the time. The S&DR merely owned the tracks and did not operate trains; anyone who paid the S&DR money could freely operate steam trains or horse-drawn wagonloads on the line. This separation of track from trains resembled the canals, where canal companies were often forbidden from operating any boats. There was no timetable or other form of central organisation. Trains ran whenever they wanted and fights often broke out when rival operators came into conflict over right-of-way on the tracks. This chaotic situation was tolerable on completely horse-drawn traffic wagonways, but with faster steam trains it soon became unworkable, as the faster speeds meant a collision could have serious consequences. With the advent of steam, new operating methods had to be developed.The S&DR proved a huge financial success and paved the way for modern rail transport.The expertise that Stephenson and his apprentice Joseph Locke gained in railway construction and locomotive building on the S&DR enabled them to construct the Liverpool and Manchester Railway, the first purpose-built steam railway and the Stephensons’ Rocket locomotive. The company also proved a successful training ground for other engineers: in 1833 Daniel Adamson was apprenticed to Timothy Hackworth and later established his own successful boiler-making business in Manchester. The S&DR was absorbed into the North Eastern Railway in 1863, which merged into the London and North Eastern Railway in 1923.Much but not all of the original S&DR line is still operating today, together with the later lines to Saltburn and Bishop Auckland, but the rest of the substantial network the S&DR built up has been closed and dismantled.

Shrewsbury Steam Rally

Coalbrookdale Engine

This years Shrewsbury Steam Rally takes place Sunday 27 and Monday 28 August (Bank Holiday Monday) at Onslow Park, Shrewsbury. This year there will be over a thousand different exhibits on display including Steam-powered tractors, steam Rollers, Fairground showman engines, Historic military vehicles, Veteran and classic cars and commercial vehicles, Classic motorbikes, Vintage tractors, Vintage fairground organs and other machinery, Plus a range of oil and steam-powered static engines. The Main Arena will play host to a variety of events including a range of ploughing and threshing demonstrations on the working field, showing the history of farming as it has changed through the last century. Teams of shire horses will plough part of the site, as part of the heavy horses display, steam-powered cultivation will also be demonstrated. There will also be a birds-of -Prey display in the main arena demonstrating falconry.

London Steam Carriage

Shrewsbury Steam Rally will also be exhibiting one of the the first railway locomotives in the world, The Coalbrookdale Locomotive in association with the Ironbridge Gorge Museum. The Coalbrookdale Locomotive was originally Designed by Cornish engineer Richard Trevithick and built by the Coalbrookdale ironworks in 1802. Trevithick disagreed with James Watt’s assertion that ‘high-pressure steam’ was extremely dangerous and set out to prove so. However James Watt had taken out many patents on all aspects of steam engines to prevent others even experimenting. Despite this, Trevithick and one or two men (even one of Watt’s staff) began working on small high-pressure steam engines in secret for pumping water and road steam engines. In 1801 when Watts’ patents finally ran out Richard Trevithick took up the challenge in the form of two road vehicles. Then In 1802 Trevithick took out a patent for his high pressure steam engine. To prove his ideas, he built a stationary engine at the Coalbrookdale Company’s works in Shropshire in 1802. The Coalbrookdale company then built a rail locomotive for him. Sadly the only known information about it comes from a drawing preserved at the Science Museum, London, together with a letter written by Trevithick to his friend, Davies Giddy. The design incorporated a single horizontal cylinder enclosed in a return-flue boiler. A flywheel drove the wheels on one side through spur gears, and the axles were mounted directly on the boiler, with no frame. In 1803 Trevithick built another steam-powered road vehicle called the London Steam Carriage, which attracted much attention from the public and press when he drove it that year in London from Holborn to Paddington and back. However It was uncomfortable for passengers and proved more expensive to run than a horse-drawn carriage and so the project was abandoned. In 1989 GKN Sankey in association with The National Vulcan Insurance Company decided to build a replica the Coalbrookdale Locomotive using letters from Trevithick himself and a drawing held by what was the original patents office in London. It was assembled by a team of nine apprentices and was later donated to the museum on the 18th of July 1990.

The Portsmouth Action Field Gun Display Team will also be performing a truly spectacular event called the South Africa Challenge, involving a Command 1 tonne, 12-pounder field gun and limber (a two-wheeled cart designed to support the trail and the stock of a field carriage) which will be raced across the main arena. The display in its present form was started in 1907, inspired by the exploits of the Navy during the Boer War in 1899. From 2001 the Field Gun crews and staff of Portsmouth Action Field Gun (PAFG) have been committed to continue to train for and display these competitive Field Gun runs. In 2001 the ‘field gun run’ was resurrected by a crew and staff comprising ex-field gunners and civilians who wanted to prove that a civilian field gun crew had the ability to perform competitive field gun runs using the same drill and equipment over the same course as the former Royal Naval gunners did for a hundred years. A South Africa Challenge was performed at The International Festival of the Sea (IFOS) in Portsmouth in June 2005. The South Africa Challenge involves two teams racing each other to dis-assemble and re-assemble the Field Gun on the carriage and fire (a blank) at each end of the run. Six full competitive field gun runs were completed with a fastest time recorded of 3 minutes and 33 seconds. In 2010 the crew trained at Mill Rythe Holiday Centre on Hayling Island, and achieved the target of having 2 running crews by the end of 2010 to coincide with the re-introduced British Military Tournament (BMT) at Earls Court.

The Red Arrows aerobatic display team will also be doing a fly-past of the Shrewsbury steam Rally. The highlight of Steam Rally will be the Grand Parade set to nostalgic music and poetry, involving all kinds of other vehicles, from Steam Traction Engines, Showman Engines, military vehicles historic lorries classic motorbikes and classic cars,

George Stephenson

English civil engineer and mechanical engineer George Stephenson sadly died 12 August 1848. He was born on 9 June 1781 and is credited with building the first public railway line in the world to use steam locomotives. Renowned as being the “Father of Railways”, the Victorians considered him a great example of diligent application and thirst for improvement, with self-help advocate Samuel Smiles particularly praising his achievements. His rail gauge of 4 feet 81⁄2 inches (1,435 mm), sometimes called “Stephenson gauge”, is the world’s standard gauge. George Stephenson was born in Wylam, Northumberland, near Newcastle upon Tyne. At 17, Stephenson became an engineman at Water Row Pit, Newburn. George studied at night school learning reading, writing and arithmetic. In 1801 he began work at Black Callerton colliery as a brakesman’, controlling the winding gear of the pit. In 1811 Stephenson fixed the pumping engine at High Pit, Killingworth. He did so with such success that he was soon promoted to enginewright for the neighbouring collieries at Killingworth, responsible for maintaining and repairing all of thec olliery engines. He soon became an expert in steam-driven machinery.

In 1815, Stephenson began to experiment with a safety lamp that would burn without causing an explosion in the mine. At the same time, Cornishman Sir Humphry Davy, the eminent scientist was also looking at the problem. Despite his lack of any scientific knowledge, Stephenson, by trial and error, devised a lamp in which the air entered via tiny holes. Stephenson demonstrated the lamp himself to two witnesses by taking it down Killingworth colliery and holding it directly in front of a fissure from which fire damp was issuing. This was a month before Davy presented his design to the Royal Society. The two designs differed in that, the Davy’s lamp was surrounded by a screen of gauze, whereas Stephenson’s lamp was contained in a glass cylinder. For his invention Davy was awarded £2,000, whilst Stephenson was accused of stealing the idea from Davy. A local committee of enquiry exonerated Stephenson, proved that he had been working separately and awarded him £1,000 but Davy and his supporters refused to accept this. They could not see how an uneducated man such as Stephenson could come up with the solution that he had. In 1833 a House of Commons committee found that Stephenson had equal claim to having invented the safety lamp. Davy went to his grave believing that Stephenson had stolen his idea. The Stephenson lamp was used exclusively in the North East, whereas the Davy lamp was used everywhere else. The experience with Davy gave Stephenson a life-long distrust of London-based, theoretical, scientific experts. There is a theory that it was Stephenson who indirectly gave the name of Geordies to the people of Tyneside. By this theory, the name of the Geordie lamp attached to the pit men themselves. By 1866 any native of Tyneside could be called a Geordie.

Cornishman Richard Trevithick is credited with the first realistic design of the steam locomotive in 1802. Later, he visited Tyneside and built an engine there for a mine-owner. Several local men were inspired by this, and designed engines of their own. Stephenson designed his first locomotive in 1814, a travelling engine designed for hauling coal on the Killingworth wagonway, and named Blücher after the Prussian general Gebhard Leberecht von Blücher. This locomotive could haul 30 tons of coal up a hill at 4 mph (6.4 km/h), and was the first successful flanged-wheel adhesion locomotive: its traction depended only on the contact between its flanged wheels and the rail. The new engines were too heavy to be run on wooden rails, and iron rails were in their infancy, with cast iron exhibiting excessive brittleness. Together with William Losh, Stephenson improved the design of cast ironrails to reduce breakage; these were briefly made by Losh, Wilson and Bell at their Walker ironworks. According toRolt, he also managed to solve the problem caused by the weight of the engine upon these primitive rails.He experimented with a ‘steam spring’ (to ‘cushion’ the weight using steam pressure), but soon followed the new practice of ‘distributing’ weight by utilising a number of wheels. For the Stockton and Darlington Railway, however, Stephenson would use only wrought iron rails.

Stephenson was hired to build an 8-mile (13-km) railway from Hetton colliery to Sunderland in 1820. The finished result used a combination of gravity on downward inclines and locomotives for level and upward stretches. It was the first railway using no animal power. In 1821, a parliamentary bill was passed to allow the building of the Stockton and Darlington Railway (S&DR). This 25-mile (40 km) railway was intended to connect various collieries situated near Bishop Auckland to the River Tees at Stockton, passing through Darlington on the way. The original plan was to use horses to draw coal carts on metal rails, but after company director Edward Pease met Stephenson he agreed to change the plans. Stephenson surveyed the line in 1821, assisted by his eighteen-year-old son Robert. That same year construction of the line began. A company was set up to manufacture locomotives for the railway, It was named Robert Stephenson and Company, and George’s son Robert was the managing director. In September 1825 the works at Forth Street, Newcastle completed the first locomotive for the new railway: originally named Active, it was soon renamed Locomotion. It was followed by “Hope”, “Diligence” and “Black Diamond”.

The Stockton and Darlington Railway opened on 27 September 1825. Driven by Stephenson, Locomotion hauled an 80-ton load of coal and flour nine miles (15 km) in two hours, reaching a speed of 24 miles per hour (39 km/h) on one stretch. The first purpose-built passenger car, dubbed Experiment,was attached, and carried dignitaries on the opening journey. It was the first time passenger traffic had been run on a steam locomotive railway. Although Richard Trevithick had demonstrated the idea back in 1808 using catch-me-who-can on a circular track which was situated near the present day Euston Station.The rails used for the new line were wrought-iron rails which could be produced in much longer lengths than the cast-iron ones and were much less liable to crack under the weight of heavy locomotives and The gauge that Stephenson chose for the line was 4 feet 81⁄2 inches (1,435 mm), and this subsequently came to be adopted as the standard gauge for railways, not only in Britain, but also throughout the world. Stephenson had also ascertained by experiments at Killingworth that half of the power of the locomotive was consumed by a gradient as little as 1 in 260 & came to the conclusion that railways should be kept as level as possible. He used this knowledge while working on the Bolton and Leigh Railway, and the Liverpool and Manchester Railway (L&MR), executing a series ofdifficult cuts, embankments and stone viaducts to smooth the route the railways took.

As the L&MR approached completion in 1829, its directors arranged for a competition to decide who would build its locomotives, and the Rainhill Trials were run in October 1829. Entries could weigh no more than six tons and had to travel along the track for a total distance of 60 miles (97 km). Stephenson’s entry was Rocket, and its performance in winning the contest made it famous. The opening ceremony of the L&MR, on 15 September 1830, was a considerable event, drawing luminaries from the government and industry, including the Prime Minister, the Duke of Wellington. The day started with a procession of eight trains setting out from Liverpool. The parade was led by “Northumbrian” and included “Phoenix”, “North Star” and “Rocket”. The railway was a resounding success and Stephenson became famous, and was offered the position of chief engineer for a wide variety of other railways.1830 also saw the grand opening of the skew bridge in Rainhill as part of the grand opening of the Liverpool and Manchester Railway. The bridge was the first to cross any railway at an angle. This required the structure to be constructed as two flat planes (overlapping in this case by 6′) between which the stonework forms a parallelogram shape when viewed from above. This has the effect of flattening the arch and the solution is to lay the bricks forming the arch at an angle to the abutments (the piers on which the arches rest). This technique, which results in a spiral effect in the arch masonry, provides extra strength in the arch to compensate for the angled abutments.

Britain led the world in the development of railways and this acted as a stimulus for the industrial revolution, by facilitating the transport of raw materials and manufactured goods. George Stephenson cannot claim to have invented the locomotive. Richard Trevithick deserves that credit. George Stephenson, with his work on the Stockton and Darlington Railway and the Liverpool and Manchester Railway, paved the way for the railway engineers who were to follow, such as his son Robert, his assistant Joseph Locke who went on to carry out much work on his own account and Isambard Kingdom Brunel. These men were following in his footsteps. Stephenson was also farsighted inrealising that the individual lines being built would eventually join together, and would need to have the same gauge. The standard gauge used throughout much of the world is due to him.

Sir John Fowler KCMG LLD

English civil engineer Sir John Fowler, 1st Baronet KCMG LLD was born 15 July 1817. in Wadsley, Sheffield, Yorkshire, England, to land surveyor John Fowler and his wife Elizabeth (née Swann). He was educated privately at Whitley Hall near Ecclesfield. He trained under John Towlerton Leather, engineer of the Sheffield waterworks, and with Leather’s uncle, George Leather, on the Aire and Calder Navigation an railway surveys. From 1837 he worked for John Urpeth Rastrick on railway projects including the London and Brighton Railway and the unbuilt West Cumberland and Furness Railway. He then worked again for George Leather as resident engineer on the Stockton and Hartlepool Railway and was appointed engineer to the railway when it opened in 1841. Fowler initially established a practice as a consulting engineer in the Yorkshire and Lincolnshire area, but, a heavy workload led him to move to London in 1844. He became a member of theInstitution of Mechanical Engineers in 1847, the year the Institution was founded, and a member of the Institution of Civil Engineers in 1849

Victoria Bridge

He specialised in the construction of railways and railway infrastructure . In 1853, he became chief engineer of the Metropolitan Railway in London, the world’s first underground railway, which opened between Paddington and Farringdon in 1863. Fowler was also engineer for the associated Metropolitan District Railway and the Hammersmith and City Railway. They were built by the “cut-and-cover” method under city streets. To avoid problems with smoke and steam overwhelming staff and passengers on the covered sections of the Metropolitan Railway, Fowler proposed a fireless locomotive. The locomotive was built by Robert Stephenson and Company and was a broad gauge 2-4-0 tender engine. The boiler had a normal firebox connected to a large combustion chamber containing fire bricks which were to act as a heat reservoir. The combustion chamber was linked to the smokebox through a set of very short firetubes. Exhaust steam was re-condensed instead of escaping and feed back to the boiler. The locomotive was intended to operate conventionally in the open, but in tunnels dampers would be closed and steam would be generated using the stored heat from the fire bricks. The first trial on the Great Western Railway in October 1861 was a failure. The condensing system leaked, causing the boiler to run dry and pressure to drop, risking a boiler explosion. A second trial on the Metropolitan Railway in 1862 was also a failure, and the fireless engine was abandoned, becoming known as “Fowler’s Ghost”. The locomotive was sold to Isaac Watt Boulton in 1865; he intended to convert it into a standard engine but it was eventually scrapped. On opening, the Metropolitan Railway’s trains were provided by the Great Western Railway, but these were withdrawn in August 1863. After a period hiring trains from the Great Northern Railway, the Metropolitan Railway introduced its own, Fowler designed, 4-4-0 tank engines in 1864. The design, known as the A class and, with minor updates, the B class, was so successful that the Metropolitan and Metropolitan District Railways eventually had 120 of the engines in use and they remained in operation until electrification of the lines in the 1900s. Today these railways form the majority of the London Underground’s Circle line

Albert Edward Bridge, Coalbrookdale

Fowler established a busy practice, working on many railway schemes across the country. He became chief engineer for the Manchester, Sheffield and Lincolnshire Railway and was engineer of the East Lincolnshire Railway, the Oxford, Worcester and Wolverhampton Railway and the Severn Valley Railway. Other railways that Fowler consulted for were the London Tilbury and Southend Railway, the Great Northern Railway, the Highland Railway and the Cheshire Lines Railway. Following the death of Isambard Kingdom Brunel in 1859, Fowler was retained by the Great Western Railway. His various appointments involved him in the design of Victoria station in London, Sheffield Victoria station, St Enoch station in Glasgow, Liverpool Central station and Manchester Central station.The latter station’s 210-foot (64 m) wide train shed roof was the second widest unsupported iron arch in Britain after the roof of St Pancras railway station. Fowler’s consulting work extended beyond Britain including railway and engineering projects in Algeria, Australia, Belgium, Egypt, France, Germany, Portugal and the United States. He travelled to Egypt for the first time in 1869 and worked on a number of, mostly unrealised, schemes for the Khedive, including a railway to Khartoum in Sudan which was planned in 1875 but not completed until after his death.

In 1870 he provided advice to an Indian Government inquiry on railway gauges where he recommended a narrow gauge of 3 feet 6 inches (1.07 m) for light railways.He visited Australia in 1886, where he made some remarks on the break of gauge difficulty. Later in his career, he was also a consultant with his partner Benjamin Baker and with James Henry Greathead on two of London’s first tube railways, the City and South London Railway and the Central London Railway. As part of his railway projects, Fowler also designed numerous bridges. In the 1860s, he designed Grosvenor Bridge, the first railway bridge over the River Thames,and the 13-arch Dollis Brook Viaduct for the Edgware, Highgate and London Railway. He is credited with the design of the Victoria Bridge at Upper Arley, Worcestershire, constructed between 1859 and 1861,and the near identical Albert Edward Bridge at Coalbrookdale, Shropshire built from 1863 to 1864. Both remain in use today carrying railway lines across the River Severn. In the 1880s, he was chief engineer for the Forth Railway Bridge, which opened in 1890 and Following the collapse of Sir Thomas Bouch’s Tay Bridge in 1879, Fowler, William Henry Barlow and Thomas Elliot Harrison were appointed in 1881 to a commission to review Bouch’s design for the Forth Railway Bridge. The commission recommended a steel cantilever bridge designed by Fowler and Benjamin Baker, which was constructed between 1883 and 1890

Fowler stood unsuccessfully for parliament as a Conservative candidate in 1880 and 1885. His standing within the engineering profession was very high, to the extent that he was elected president of the Institution of Civil Engineers in 1865, its youngest president. Through his position in the Institution and through his own practice, he led the development of training for engineers. In 1857, he purchased a 57,000 acres (23,000 ha) estate at Braemore in Ross-shire, Scotland, where he spent frequent holidays and where he was a Justice of the Peace and a Deputy Lieutenant of the County.He listed his recreations in Who’s Who as yachting and deerstalking and was a member of the Carlton Club, St Stephen’s Club, the Conservative Club and the Royal Yacht Squadron. He was also President of the Egyptian Exploration Fund.In 1885 he was made a Knight Commander of the Order of Saint Michael and Saint George as thanks from the government for allowing the use of maps of the Upper Nile valley he had had made when working on the Khedive’s projects. They were the most accurate survey of the area and were used in the British Relief of Khartoum. Following the successful completion of the Forth Railway Bridge in 1890, Fowler was created a baronet, taking the name of his Scottish estate as his territorial designation. Along with Benjamin Baker, he received an honorary degree of Doctor of Laws from the University of Edinburgh in 1890 for his engineering of the bridge. In 1892, the Poncelet Prize was doubled and awarded jointly to Baker and Fowler. Fowler died in Bournemouth, Dorset, at the age of 81 and is buried in Brompton Cemetery, London. He was succeeded in the baronetcy by his son, Sir John Arthur Fowler, 2nd Baronet (died 25 March 1899). The baronetcy became extinct in 1933 on the death of Reverend Sir Montague Fowler, 4th Baronet, the first baronet’s third son.

Thomas Savery

On 2 July 1698, English inventor Thomas Savery patented an early steam engine for raising water and allowing motion to all sorts of mill work by the impellent force of fire, which will be of great use and advantage for draining mines, serving towns with water, and for the working of all sorts of mills which don’t have water or constant winds. He demonstrated it to the Royal Society on 14 June 1699. The patent has no illustrations or even description, but in 1702 Savery described the machine in his book The Miner’s Friend; or, An Engine to Raise Water by Fire, in which he claimed that it could pump water out of mines. Savery’s engine had no piston, and no moving parts except from the taps. It was operated by first raising steam in the boiler; the steam was then admitted to the working vessel, allowing it to blow out through a downpipe into the water that was to be raised. When the system was hot and therefore full of steam the tap between the boiler and the working vessel was shut, and if necessary the outside of the vessel was cooled. This made the steam inside it condense, creating a partial vacuum, and atmospheric pressure pushed water up the downpipe until the vessel was full.

At this point the tap below the vessel was closed, and the tap between it and the up-pipe opened, and more steam was admitted from the boiler. As the steam pressure built up, it forced the water from the vessel up the up-pipe to the top of the mine.However, his engine hadfour serious problems. First, every time water was admitted to the working vessel much of the heat was wasted in warming up the water that was being pumped. Secondly, the second stage of the process required high-pressure steam to force the water up, and the engine’s soldered joints were barely capable of withstanding high pressure steam and needed frequent repair. Thirdly, although this engine used positive steam pressure to push water up out of the engine (with no theoretical limit to the height to which water could be lifted by a single high-pressure engine) practical and safety considerations meant that in practice, to clear water from a deep mine would have needed a series of moderate-pressure engines all the way from the bottom level to the surface. Fourthly, water was pushed up into the engine only by atmospheric pressure (working against a condensed-steam ‘vacuum’), so the engine had to be no more than about 30 feet (9.1 m) above the water level – requiring it to be installed, operated, and maintained far down in the mine.

Savery’s original patent of July 1698 gave 14 years’ protection; the next year, 1699, an Act of Parliament was passed which extended his protection for a further 21 years. This Act became known as the “Fire Engine Act”. Savery’s patent covered all engines that raised water by fire, and it thus played an important role in shaping the early development of steam machinery in the British Isles.The architect James Smith of Whitehill acquired the rights to use Savery’s engine in Scotland. In 1699, he entered into an agreement with the inventor, and in 1701 he secured a patent from the Parliament of Scotland, modeled on Savery’s grant in England, and designed to run for the same period of time. Smith described the machine as “an engyne or invention for raiseing of water and occasioning motion of mill-work by the force of fire”, and he claimed to have modified it to pump from a depth of 14 fathoms, or 84 feet. In England, Savery’s patent meant that Thomas Newcomen was forced to go into partnership with him.

By 1712, arrangements had been between the two men to develop Newcomen’s more advanced design of steam engine, which was marketed under Savery’s patent. Newcomen’s engine worked purely by atmospheric pressure, thereby avoiding the dangers of high-pressure steam, and used the piston concept invented in 1690 by the Frenchman Denis Papin to produce the first steam engine capable of raising water from deep mines. After his death in 1715 Savery’s patent and Act of Parliament became vested in a company, The Proprietors of the Invention for Raising Water by Fire. This company issued licences to others for the building and operation of Newcomen engines, charging as much as £420 per year patent royalties for the construction of steam engines. In one case a colliery paid the Proprietors £200 per year and half their net profits “in return for their services in keeping the engine going”.The Fire Engine Act did not expire until 1733, four years after the death of Newcomen.

A newspaper in March 1702 announced that Savery’s engines were ready for use and might be seen on Wednesday and Saturday afternoons at his workhouse in Salisbury Court, London, over against the Old Playhouse.One of his engines was set up at York Buildings in London. According to later descriptions this produced steam ‘eight or ten times stronger than common air’ (i.e. 8-10 atmospheres), but blew open the joints of the machine, forcing him to solder the joints with spelter. Another was built to control the water supply at Hampton Court, while another at Campden House in Kensington operated for 18 years.A few Savery engines were tried in mines, an unsuccessful attempt being made to use one to clear water from a pool called Broad Waters in Wednesbury (then in Staffordshire) and nearby coal mines. This had been covered by a sudden eruption of water some years before. However the engine could not be ‘brought to answer’. The quantity of steam raised was so great as ‘rent the whole machine to pieces’. The engine was laid aside, and the scheme for raising water was dropped as impracticable. This may have been in about 1705.Another engine was proposed in 1706 by George Sparrow at Newbold near Chesterfield, where a landowner was having difficulty in obtaining the consent of his neighbours for a sough to drain his coal. Nothing came of this, perhaps due to the explosion of the Broad Waters engine. It is also possible that an engine was tried at Wheal Vor, a copper mine in Cornwall. Several later pumping systems may be based on Savery’s pump. For example, the twin-chamber pulsometer steam pump was a successful development of it.