Richard Trevithick

Pen-y-Darren


BCornish Inventor and Mining Engineer Richard Trevithick was born 13 April 1771 in Tregajorran, Cornwall and his most significant success was the high pressure steam engine and he also built the first full-scale working railway steam locomotive. On 21 February 1804 the world’s first locomotive-hauled railway journey took place as Trevithick’s unnamed steam locomotive hauled a train

Catch-me-who-Can

along the tramway of the Pen-y-darren Ironworks, near Merthyr Tydfil in Wales. Trevithick was an engineer at a mine in 1797 and with the help of Edward Bull pioneered the use of a High Pressure Steam Engine, but ran afoul of Matthew Boulton & James Watt, who were working on a similar device and held a number of Patents. He improved boiler technology allowing the safe production of high pressure steam, able to move pistons in steam engines instead of using atmospheric pressure.

William Murdoch also demonstrated a model steam carriage to Trevithick in 1794. In fact, Trevithick lived next door to Murdoch in Redruth in 1797 and 1798. Oliver Evans in the U.S. Was working on something similar and Arthur Woolf was also experimenting on a similar engine whilst working as the Chief Engineer of the Griffin Brewery. However Trevithick actually made high pressure steam work, eliminating the need for a condenser, and allowing the use of a smaller cylinder, saving space and weight. Making the engine more compact, lighter and small enough to carry its own weight even with a carriage attached. Trevithick started building his first stationary models of high pressure steam engines, then attached one to a road carriage. Exhaust steam was vented via a vertical chimney, thus avoiding a condenser and any possible infringements of Watt’s patent, with linear motion being converted into circular motion via a crank instead of a beam. Trevithick built a full-size steam road locomotive in 1801 in Camborne. He named the carriage ‘Puffing Devil’ and, on Christmas Eve it successfully carried seven men from Fore Street up Camborne Hill, past Camborne Cross, to the nearby village of Beacon with his cousin and associate, Andrew Vivian, steering. This is inspired the popular Cornish folk song “Camborne Hill”. However, a steam wagon built in 1770 by Nicolas-Joseph Cugnot may have an earlier claim. During further tests, Trevithick’s locomotive was prone to break down and on one occasion the Boiler was allowed to run dry and the machine exploded. Trevithick did not consider this a serious setback, but rather operator error. In 1802 Trevithick took out a patent for his high pressure steam engine.

Coalbrookdale Engine

To prove his ideas, he built a stationary engine at the Coalbrookdale Company’s works in Shropshire in 1802. The Coalbrookdale company then built a rail locomotive for him, but little is known about it, including whether or not it actually ran. To date, the only known information about it comes from a drawing preserved at the Science Museum, London, together with a letter written by Trevithick to his friend, Davies Giddy. The design incorporated a single horizontal cylinder enclosed in a return-flue boiler. A flywheel drove the wheels on one side through spur gears, and the axles were mounted directly on the boiler, with no frame. Unfortunately The Puffing Devil could not maintain sufficient steam pressure and would have been of little practical use. In 1803 he built another steam-powered road vehicle called the London Steam Carriage, which attracted much attention from the public and press when he drove it that year in London from Holborn to Paddington and back. It was uncomfortable for passengers and proved more expensive to run than a horse-drawn carriage and so the project was abandoned.

London Steam Carriage

In 1802 Trevithick built one of his high pressure steam engines to drive a hammer at the Pen-y-Darren Ironworks in Merthyr Tydfil, South Wales. With the assistance of Rees Jones, an employee of the iron works and under the supervision of Samuel Homfray, the proprietor, he mounted the engine on wheels and turned it into a locomotive. In 1803 Trevithick sold the patents for his locomotives to Samuel Homfray. Homfrey was so impressed with Trevithick’s locomotive that he made a bet with another ironmaster, Richard Crawshay, for 500 guineas that Trevithick’s steam locomotive could haul 10 tons of iron along the Merthyr Tydfil Tramroad from Penydarren to Abercynon , a distance of 9.75 miles (16 km). Amid great interest from the public, on 21 February 1804 it successfully carried 10 tons of iron, 5 wagons and 70 men the full distance in 4 hours and 5 minutes, an average speed of approximately 2.4 mph (3.9 km/h). As well as Homfray, Crawshay and the passengers, other witnesses included Mr. Giddy, a respected patron of Trevithick and an ‘engineer from the Government’. The locomotive was relatively primitive comprising of a boiler with a single return flue mounted on a four wheel frame. At one end, a single cylinder with very long stroke was mounted partly in the boiler, and a piston rod crosshead ran out along a slidebar, an arrangement that looked like a giant trombone. As there was only one cylinder, this was coupled to a large flywheel mounted on one side. The rotational inertia of the flywheel would even out the movement that was transmitted to a central cog-wheel that was, in turn connected to the driving wheels. It used a high pressure cylinder without a condenser, the exhaust steam was sent up the chimney assisting the draught through the fire, increasing efficiency even more. The proprietor of the Wylam colliery near Newcastle, heard of the success in Wales and wrote to Trevithick asking for locomotive designs. These were sent to John Whitfield at Gateshead, Trevithick’s agent, who built what was probably the first locomotive to have flanged wheels. Unfortunately Trevithick’s machine was too heavy for the wooden track.

Then In 1808 Trevithick publicised his steam railway locomotive expertise by building a new locomotive called ‘Catch me who can’, built for him by John Hazledine and John Urpeth Rastrick at Bridgnorth in Shropshire, This was similar to that used at Penydarren and named by Mr. Giddy’s daughter. This was Trevithick’s third railway locomotive after those used at Pen-y-darren ironworks and the Wylam colliery. He ran it on a circular track just south of the present day Euston Square tube station in London, Admission to the “steam circus” was one shilling including a ride and it was intended to show that rail travel was faster than by horse. So Recently a group of dedicated people down at the Severn Valley Railway decided to build a replica of Catch-Me-Who-Can. In 1805 Cornish Engineer Robert Vazie, excavated a tunnel under the River Thames at Rotherhithe and had serious problems with flooding getting no further than sinking the end shafts. So Trevithick was consulted and paid £1000 (the equivalent of £67,387 as of 2014 to complete the tunnel, a length of 1220 feet (366 m). In August 1807 Trevithick began driving a small pilot tunnel and By 23 December after it had progressed 950 feet (285 m) however progress was delayed after The tunnel was flooded twice and Trevithick, was nearly drowned consequently the project was not completed until 1843 when Sir Marc and Isambard Kingdom Brunel built a tunnel under the Thames. Trevithick’s used a submerged tube to cross the Detroit River in Michigan with the construction of the Michigan Central Railway Tunnel, under the engineering supervision of The New York Central Railway’s engineering vice president, William J Wilgus. Construction began in 1903 and was completed in 1910. The Detroit–Windsor Tunnel which was completed in 1930 for automotive traffic, and the tunnel under the Hong Kong harbour were also submerged tube designs. Trevithick’s high-pressure steam engines had many applications including cannon manufacture, stone crushing, rolling mills, forge hammers, blast furnace blowers and traditional mining. He also built a barge powered by paddle wheels and several dredgers.

In 1808, Trevithick entered a partnership with West Indian Merchant Robert Dickinson, who had supported Trevithick’s patents. Including the ‘Nautical Labourer’; a steam tug with a floating crane propelled by paddle wheels. He also patented Iron tanks in ships for storage of cargo and water instead of in wooden caskS, these were also used to raise sunken wrecks by placing them under the wreck and creating buoyancy by pumping them full of air. In 1810 a wreck near Margate was raised in this way. Trevithick worked on many other ideas on improvements for ships: iron floating docks, iron ships, telescopic iron masts, improved ship structures, iron buoys and using heat from the ships boilers for cooking. In May 1810, he caught typhoid and nearly died and in February 1811 he and Dickinson were declared bankrupt. Around 1812, Trevithick designed the ‘Cornish boiler’. These were horizontal, cylindrical boilers with a single internal fire tube or flue passing horizontally through the middle. Hot exhaust gases from the fire passed through the flue thus increasing the surface area heating the water and improving efficiency. These types were installed in the Boulton and Watt pumping engines at Dolcoath and more than doubled their efficiency.

Again in 1812, he installed a new ‘high-pressure’ experimental steam engine also with condensing at Wheal Prosper. This became known as the ‘Cornish engine’ and was the most efficient in the world at that time. Other Cornish engineers contributed to its development but Trevithick’s work was predominant. In the same year he installed another high-pressure engine, though non-condensing, in a threshing machine on a farm at Probus, Cornwall. It was very successful and proved to be cheaper to run than the horses it replaced. It ran for 70 years and is exhibited at the Science Museum. Trevithick attempted to build a ‘recoil engine’ similar to the aeolipile described by Hero of Alexandria in about AD 50, this comprised a boiler feeding a hollow axle to route the steam to a catherine wheel with two fine-bore steam jets on its circumference. The first wheel was 15 feet (4.6 m) in diameter and a later attempt was 24 feet (7.3 m) in diameter. To get any usable torque, steam had to issue from the nozzles at a very high velocity and in such large volume that it proved not to operate with adequate efficiency. Today this would be recognised as a reaction turbine.

Around 1811 a miner, named Francisco Uville bought one of Trevithick’s Hight Pressure Steam Engine for draining water from his silver mine at Cerro de Pasco, Peru. In 1813 Uville set sail again for England and, having fallen ill on the way, broke his journey via Jamaica. When he had recovered he boarded the Falmouth packet ship ‘Fox’ coincidentally with one of Trevithick’s cousins on board the same vessel. On 20 October 1816 Trevithick left Penzance on the whaler ship Asp accompanied by a lawyer named Page and a boilermaker bound for Peru where he travelled widely, acting as a consultant on mining methods. The government granted him certain mining rights and he found mining areas, but did not have the funds to develop them, with the exception of a copper and silver mine at Caxatambo.

After serving in the army of Simon Bolivar he returned to Caxatambo but was forced to leave the area and abandon £5000 worth of ore ready to ship. Uville died in 1818 and Trevithick soon returned to Cerro de Pasco And After leaving Cerro de Pasco, Trevithick passed through Ecuador on his way to Bogotá in Colombia. He arrived in Costa Rica in 1822 to build mining machinery. However transporting ore and equipment, using the San Juan River, the Sarapiqui River, and the railway proved treacherous And Trevithick was nearly killed on at least two occasions – he nearly drowned, and was nearly devoured by an alligator.He made his way to Cartagena where he met Robert Stephenson who was on his way home from Colombia. And Stephenson gave Trevithick £50 to help his passage home. He arrived at Falmouth in October 1827 with few possessions other than the clothes he was wearing, unsurprisingly Trevithick never returned to Costa Rica. In 1829 he built a closed cycle steam engine followed by a vertical tubular boiler. In1830 he invented an early form of storage room heater, which comprised a small fire tube boiler with a detachable flue which could be heated either outside or indoors with the flue connected to a chimney. To commemorate the passing of the Reform Bill in 1832 he designed a massive column to be 1000 feet (300 m) high, 100 feet (30 m) in diameter at the base tapering to 12 feet (3.6 m) at the top where a statue of a horse would have been mounted. but it was never built. he was also invited to work on an engine of a new vessel at Dartford, Which involved a reaction turbine.

Despite his many innovations Richard Trevithick died penniless on April 22 1833 while lodging at the Bull Hotel, Dartford After being taken ill with pneumonia. Following a week’s confinement in bed he died on the morning of 22 April 1833. Trevithick was buried in an unmarked grave in St Edmunds Burial Ground, East Hill, Dartford. The burial ground closed in 1857, with the gravestones being removed in the 1960s. However A plaque marks the approximate spot believed to be the site of the grave on the side of the park, near the East Hill gate. He made a valuable contribution to engineering and technology and many replicas of his machinery have since been built. A replica of Catch-me-who-can has been built at the Severn Valley Railway

Isambard Kingdom Brunel

Best known for building dockyards, the Great Western Railway, steamships, bridges, tunnels and revolutionising public transport and modern engineering, the British mechanical and Civil Engineer Isambard Kingdom Brunel, FRS was born 9 April 1806.When Brunel was eight he was sent to Dr Morrell’s boarding school in Hove, where he learned the classics. His father, was determined that Brunel should have access to the high-quality education he had enjoyed in his youth in France; accordingly, at the age of 14, the younger Brunel was enrolled first at the College of Caen in Normandy, then at Lycée Henri-Quatre in Paris. Sadly his because his Father Marc sent him to expensive schools, he encountered financial problems, however because he was a Prominent engineer the Government intervened on his behalf. When Brunel completed his studies at Henri-Quatre in 1822, he was due to attend the renowned engineering school École Polytechnique, however Brunel studied under the prominent master clockmaker and horologist Abraham-Louis Breguet instead, after he praised Brunel’s potential in letters to his father.In late 1822, having completed his apprenticeship, Brunel returned to England. Brunel worked for several years as an assistant engineer on the hazardous project to create a tunnel under London’s River Thames near Rotherhithe, alongside his Father, who was chief engineer. However cave-ins and severe flooding in 1828 killed a number of Miners a delayed work, with Brunel narrowly escaping death himself.

During the early part of Brunel’s life, the use of railways began to take off as a major means of transport for goods. This influenced Brunel’s involvement in railway engineering, including railway bridge engineering. In 1833, before the Thames Tunnel was complete, Brunel was appointed chief engineer of the Great Western Railway, one of the wonders of Victorian Britain, running from London to Bristol and later Exeter. The company was founded at a public meeting in Bristol in 1833, and was incorporated by Act of Parliament in 1835. It was Brunel’s vision that passengers would be able to purchase one ticket at London Paddington and travel from London to New York, changing from the Great Western Railway to the Great Western steamship at the terminus in Neyland, South Wales. He surveyed the entire length of the route between London and Bristol himself, with the help of many including his Solicitor Jeremiah Osborne of Bristol Law Firm Osborne Clarke who one occasion rowed Isambard Kingdom Brunel down the River Avon himself to survey the bank of the river for the route. Brunel decided to use a broad gauge of 7 ft 1⁄4 in (2,140 mm) for the track, despite almost all other railways using standard Gauge, because he believed Broad Gauge would offer superior running at high speeds; he also proved through both calculation and a series of trials that his broader gauge was the optimum size for providing both higher speeds and a stable and comfortable ride to passengers, with the wider gauge allowing for larger carriages and thus greater freight capacity.

Drawing on Brunel’s experience with the Thames Tunnel, the Great Western designed many architectural feats of engineering including soaring viaducts such as the one in Ivybridge, specially designed stations, and vast tunnels including the Box Tunnel, which was the longest railway tunnel in the world at that time. Brunel also ordered many Locomotives to his own specification including “North Star” and 20-year-old Daniel Gooch (later Sir Daniel) was appointed as Superintendent of Locomotive Engines. Brunel and Gooch chose to locate their locomotive works at the village of Swindon.

Brunel also designed many bridges including the Clifton Suspension Bridge in Bristol, which spans over 700 ft (210 m), and nominally 200 ft (61 m) above the River Avon. Brunel submitted his designs to a committee headed by Thomas Telford, who rejected all entries, in favour of his own design, however the Public voted in favour of Brunel’s design. Brunel also designed the Maidenhead Railway Bridge. Work also started on the Clifton suspension bridge in 1831, but was suspended due to the Queen Square Riots, However Thanks to colleagues at the Institute of Civil Engineers Work recommenced in 1862 and was completed in 1864, five years after Brunel’s death. The Clifton Suspension Bridge still stands today and over 4 million vehicles traverse it every year.

Brunel also designed the Royal Albert Bridge spanning the River Tamar at Saltash near Plymouth, Somerset Bridge (an unusual laminated timber-framed bridge near Bridgwater, the Windsor Railway Bridge. The Maidenhead Railway Bridge over the Thames in Berkshire is still carrying main line trains to the west, even though today’s trains are about ten times heavier than in Brunel’s time.In 1845 Hungerford Bridge, a suspension footbridge across the Thames near Charing Cross Station in London, was opened. It was replaced by a new railway bridge in 1859, and the suspension chains were used to complete the Clifton Suspension Bridge. Brunel also designed the Royal Albert Bridge in 1855 for the Cornwall Railway, this consists of two main spans of 455 ft (139 m), 100 ft (30 m) above mean high spring tide, plus 17 much shorter approach spans. Opened by Prince Albert on 2 May 1859, it was completed in the year of Brunel’s death.

PART TWO

Brunel’s achievements inspired and ignited the imagination of many technically minded Britons. However After Brunel’s death standard gauge was adopted by all railways in the country. Despite the Great Western’s claim of proof that its broad gauge was the better the decision was made to use Stephenson’s standard gauge, mainly because this had already covered a far greater amount of the country. However, by May 1892 when the broad gauge was abolished the Great Western had already been re-laid as dual gauge (both broad and standard). There is also a larger than life bronze statue of him at Neyland holding a steamship in one hand and a locomotive in the othe

another of Brunel’s interesting use of technical innovations was the atmospheric railway, the extension of the Great Western Railway (GWR) southward from Exeter towards Plymouth, technically the South Devon Railway (SDR), though supported by the GWR. Instead of using locomotives, the trains were moved by Clegg and Samuda’s patented system of atmospheric (vacuum) traction, whereby stationary pumps sucked air from a pipe placed in the centre of the track.The section from Exeter to Newton (now Newton Abbot) was completed on this principle, and trains ran at approximately 68 miles per hour (109 km/h). Pumping stations with distinctive square chimneys were sited at two-mile intervals.  Fifteen-inch (381 mm) pipes were used on the level portions, and 22-inch (559 mm) pipes were intended for the steeper gradients.The technology required the use of leather flaps to seal the vacuum pipes. The natural oils were drawn out of the leather by the vacuum, making the leather vulnerable to water, rotting it and breaking the fibres when it froze. It had to be kept supple with tallow, which is attractive to rats. The flaps were eaten, and vacuum operation lasted less than a year, from 1847 (experimental service began in September; operations from February 1848) to 10 September 1849. A number of South Devon Railway engine houses still stand, including that at Totnes (scheduled as a grade II listed monument in 2007 to prevent its imminent demolition, even as Brunel’s bicentenary celebrations were continuing) and at Starcross, on the estuary of the River Exe, which is a striking landmark, and a reminder of the atmospheric railway, also commemorated as the name of the village pub.

In 1835, before the Great Western Railway had opened, Brunel proposed extending its transport network by boat from Bristol across the Atlantic Ocean to New York City. The Great Western Steamship Company was formed by Thomas Guppy for that purpose. It was widely disputed whether it would be commercially viable for a ship powered purely by steam to make such long journeys. Technological developments in the early 1830s—including the invention of the surface condenser, which allowed boilers to run on salt water without stopping to be cleaned—made longer journeys more possible, but it was generally thought that a ship would not be able to carry enough fuel for the trip and have room for a commercial cargo. Brunel formulated the theory that the amount a ship could carry increased as the cube of its dimensions, whereas the amount of resistance a ship experienced from the water as it travelled only increased by a square of its dimensions. This would mean that moving a larger ship would take proportionately less fuel than a smaller ship.

To test this theory, Brunel offered his services for free to the Great Western Steamship Company, which appointed him to its building committee and entrusted him with designing its first ship, the Great Western.When it was built, the Great Western was the longest ship in the world at 236 ft (72 m) with a 250-foot (76 m) keel. The ship was constructed mainly from wood, but Brunel added bolts and iron diagonal reinforcements to maintain the keel’s strength. In addition to its steam-powered paddle wheels, the ship carried four masts for sails. The Great Western embarked on her maiden voyage from Avonmouth, Bristol, to New York on 8 April 1838 with 600 long tons (610,000 kg) of coal, cargo and seven passengers on board. Brunel himself missed this initial crossing, having been injured during a fire aboard the ship as she was returning from fitting out in London.

As the fire delayed the launch several days, the Great Western missed its opportunity to claim title as the first ship to cross the Atlantic under steam power alone. Even with a four-day head start, the competing Sirius arrived only one day earlier and its crew was forced to burn cabin furniture, spare yards and one mast for fuel. In contrast, the Great Western crossing of the Atlantic took 15 days and five hours, and the ship arrived at her destination with a third of its coal still remaining, demonstrating that Brunel’s calculations were correct. The Great Western had proved the viability of commercial transatlantic steamship service, which led the Great Western Steamboat Company to use her in regular service between Bristol and New York from 1838 to 1846. She made 64 crossings, and was the first ship to hold the Blue Riband with a crossing time of 13 days westbound and 12 days 6 hours eastbound. The service was commercially successful enough for a sister ship to be required, which Brunel was asked to design.

Brunel had become convinced of the superiority of propeller-driven ships over paddle wheels. After tests conducted aboard the propeller-driven steam tug Archimedes, he incorporated a large six-bladed propeller into his design for the 322-foot (98 m) Great Britain, which was launched in 1843.Great Britain is considered the first modern ship, being built of metal rather than wood, powered by an engine rather than wind or oars, and driven by propeller rather than paddle wheel. She was the first iron-hulled, propeller-driven ship to cross the Atlantic Ocean.Her maiden voyage was made in August and September 1845, from Liverpool to New York. In 1846, she was run aground at Dundrum, County Down. She was salvaged and employed in the Australian service.And today she is fully preserved and open to the public in Bristol, UK.

In 1852 Brunel turned to a third ship, larger than her predecessors, intended for voyages to India and Australia. The Great Eastern (originally dubbed Leviathan) was cutting-edge technology for her time: almost 700 ft (210 m) long, fitted out with the most luxurious appointments, and capable of carrying over 4,000 passengers. Great Eastern was designed to cruise non-stop from London to Sydney and back (since engineers of the time misunderstood that Australia had no coal reserves), and she remained the largest ship built until the start of the 20th century. Like many of Brunel’s ambitious projects, the ship soon ran over budget and behind schedule in the face of a series of technical problems. The ship has been portrayed as a white elephant, but it has been argued by David P. Billington that in this case Brunel’s failure was principally one of economics—his ships were simply years ahead of their time. His vision and engineering innovations made the building of large-scale, propeller-driven, all-metal steamships a practical reality, but the prevailing economic and industrial conditions meant that it would be several decades before transoceanic steamship travel emerged as a viable industry.Great Eastern was built at John Scott Russell’s Napier Yard in London, and after two trial trips in 1859, set forth on her maiden voyage from Southampton to New York on 17 June 1860. Though a failure at her original purpose of passenger travel, she eventually found a role as an oceanic telegraph cable-layer. Under Captain Sir James Anderson, the Great Eastern played a significant role in laying the first lasting transatlantic telegraph cable, which enabled telecommunication between Europe and North America.

Brunel became A celebrated engineer in his era and numerous monuments were dedicated to Brunel in London at Temple, Brunel University, Paddington station, Bristol, Plymouth, Swindon, Milford Haven and Saltash. The topmast of the Great Eastern is also used as a flagpole at the entrance to Anfield, Liverpool Football Club’s ground.Contemporary locations bear Brunel’s name, such as Brunel University in London, a shopping centre in Bletchley, Milton Keynes, and a collection of streets in Exeter: Isambard Terrace, Kingdom Mews, and Brunel Close. A road, car park, and school in his home city of Portsmouth are also named in his honour, along with one of the city’s largest public houses There is an engineering lab building at the University of Plymouth named in his honour.

In a 2002 BBC television poll Of the “100 Greatest Britons”, Brunel came second, behind Winston Churchill. Brunel’s life and works have been depicted in numerous books, films and television programs. Perhaps the most recent is the 2003 book and BBC TV series, Seven Wonders of the Industrial World, which included a dramatisation of the building of the Great Eastern. Many of Brunel’s bridges are also still in use, having stood the test of time. Brunel’s first engineering project, the Thames Tunnel, is now part of the London Overground network. The Brunel Engine House at Rotherhithe, which once housed the steam engines that powered the tunnel pumps, now houses the Brunel Museum dedicated to the work and lives of Marc and Isambard Kingdom Brunel. Many of Brunel’s original papers and designs are now held in the Brunel Institute alongside the SS Great Britain in Bristol, and are freely available for researchers.

British Steam Railways

I am currently collecting British Steam Railways, the latest series of lavishly-illustrated hard backed books by DeAgostini. These chronicle the rise of Steam Power in Britain, From the efforts of early pioneers like Cugnot, Richard Trevithick and George Stephenson. The books look at the origins of the steam locomotive and also features Early locomotives such as Stepenson’s Rocket and Locomotion No.1. It also features Powerful Turn of the Century locomotives like the Midland Railway Compound no.1000 and GWR 3717/3440 City-of-Truro which held the unofficial record for being the first locomotive to exceed 100 miles per hour.

British Steam railways also looks at the period between World war One and the 1920’s and features the Q1 Class Locomotives, LNER A3 4-6-2 4472 Flying Scotsman and the GWR 4-6-0 Castle Class locomotives. It also looks at the golden age in the 1930’s When train travel was seen as glamorous and The World Record breaking steam locomotive LNER A4 4-6-2 locomotive no. 4468 Mallard reached 126 Miles per hour and broke the record for being the worlds fastest steam locomotive.

The books also feature in depth articles on noteworthy Chief Mechanical Engineers such as sir Nigel Gresley, Charles Collett, Henry Ivatt and sir William Stanier, whose innovative designs with the Jubilees, Black Fives and the three cylinder Princess Royal Class Locomotives helped to shape locomotive development throughout the years and culminated in the Duchess of Hamilton and Duke of Gloucester which were among the most powerful Pacific locomotives. Another noteworthy chief Mechanical engineer featured is the Southern Railway’s Richard Maunsell who took Robert Urie’s original locomotive designs such as the S15, King Arthur Class, Lord Nelson and Schools class and improved upon them. The series also looks at innovative and technologically advanced cutting edge locomotives such as Oliver Bulleid’s 1941 Merchant Navy Class locomotives, Battle Of Britain Class locomotives and West Country light pacifics. Also featured are the GWR KING class 4-6-0 locomotives which are also among the most powerful British Steam Locomotives. Many other noteworthy locomotives are featured such as LNER D49, j94 Austerities, SR PACIFIC 35028 Clan Line, GWR Hall Locomotives, Jones Goods Locomotives, Duke of Gloucester, LMS 6100 Royal Scot, lMS 6201 Princess Elizabeth, GWR 3440 City of Truro, 4771 Green Arrow, King George V, LMS 8f’s, Q1 Class.

The books also look at the formation of the big four railway companies Great Western, London North East, London Midland Scotland and Southern Railway in 1923 and also look at the post-war period when the Railway was nationalised in 1948 to form British Railways, in an effort to save money and saw a new range of Standard Locomotives being introduced. However this measure plus lack of investment, saw the slow decline of steam in the Railways during the 1950’s and 1960’s. This was hastened by the so-called Beeching Axe. When ICI BOSS Sir Richard Beeching was asked by the government to stop the railways losing money So he recommended a series of closures and favoured road transport. This plus the introduction of Diesel Locomotives sounded the death knell for the final steam locomotives made in the 1960’s such as the Britannia Class locomotives and the Standard Class 92xxx 2-10-0 class freight locomotives such as Evening star which were only introduced only a few years before steam traction was banned outright in 1968 following the Fifteen Guineas Special in August 1968.

There are also twelve DVD’s including Arfon Haines DVD Learning to Steam, these feature hours of archive steam footage, footage of preserved Steam Engines running on Heritage lines and footage from the footplate. Plus a silver plated stationmasters pocket-watch and TWO Stunning prints of LNER 4472 Flying Scotsman and LNER 4468 Mallard.

Pen-y-darren

Pen-y-Darren

On 21 February 1804, the world’s first self propelling locomotive, the Pen-y-Darren, ran along the Merthyr Tydfil treatment road from Pen-y-Darren to Abercynon a distance of 9.75 miles(16 kilometres). The Pen-y-Darren was based on a 1802, high-pressure steam engines which had been built by Cornish engineer Richard Trevithick to drive a hammer at the Pen-y-Darren Ironworks in Merthyr Tydfil, Mid Glamorgan . With the assistance of Rees Jones, an employee of the iron works and under the supervision of Samuel Homfray, the proprietor, The engine was mounted on wheels and turned it into a locomotive. In 1803, Trevithick sold the patents for his locomotives to Samuel Homfray.

Homfray was so impressed with Trevithick’s locomotive that he made a bet with another ironmaster, Richard Crawshay, for 500 guineas that Trevithick’s steam locomotive could haul ten tons of iron along the Merthyr Tydfil Tramroad from Penydarren to Abercynon. Amid great interest from the public, on 21 February 1804 it successfully carried 10 tons of iron, 5 wagons and 70 men the full distance in 4 hours and 5 minutes, an average speed of approximately 2.4 mph (3.9 km/h). as well as Homfray, Crawshay and the passengers, other witnesses includedMr. Giddy, a respected patron of Trevithick and an ‘engineer from the Government’. the engineer from the government was probably a safety inspector and particularly interested in the boiler’s ability to withstand high steam pressures.

The configuration of the Pen-y-darren engine differed from the Coalbrookdale engine. The cylinder was moved to the other end of the boiler so that the firedoor was out of the way of the moving parts. This obviously also involved putting the crankshaft at the chimney end. The locomotive comprised a boiler with a single return flue mounted on a four wheel frame at one end, a single cylinderwith very long stroke was mounted partly in the boiler, and a piston rod crosshead ran out along a slidebar, an arrangement that looked like a giant trombone. As there was only one cylinder, this was coupled to a large flywheel mounted on one side. The rotational inertia of the flywheel would even out the movement that was transmitted to a central cog-wheel that was, in turn connected to the driving wheels. It used a high-pressure cylinder without a condenser, the exhaust steam was sent up the chimney assisting the draught through the fire, increasing efficiency even more.

Despite many people’s doubts, he won the bet and showed that, provided that the gradient was sufficiently gentle, it was possible to successfully haul heavy carriages along a “smooth” iron road using the adhesive weight alone of a suitably heavy and powerful steam locomotive. Trevithick’s was probably the first to do so; however some of the short cast iron plates of the tramroad broke under the locomotive as they were intended only to support the lighter axle load of horse-drawn wagons and so the tramroad returned to horse power after the initial test run. Homfray was pleased he won his bet. The engine was placed on blocks and reverted to its original stationary job of driving hammers. In modern Merthyr Tydfil, behind the monument to Trevithick’s locomotive is a stone wall, the sole remainder of the former boundary wall of Homfray’s Penydarren House. A full-scale working reconstruction of the Pen-y-darren locomotive was commissioned in 1981 and delivered to the Welsh Industrial and Maritime Museum in Cardiff; when that closed, it was moved to the National Waterfront Museum in Swansea. Several times a year it is run on a 40m length of rail outside the museum.

British Steam Railways

34027 Taw Valley

British Steam Railways is new series of lavishly-illustrated hard backed books by DeAgostini, which chronicles the rise of Steam Power in Britain. Charting From the efforts of early pioneers like Cugnot, Richard Trevithick and George Stephenson to record breakers like 3440 City of Truro, Flying Scotsman and Mallard, through to the golden age in the 1930’s. From the formation of the BIG Four Railway companies in 1923: Great Western, London Midland Scotland, London North East and Southern Region, to The formation of British Railways in 1948 which combined the big four railway companies and introduced a new class of Standard Engines which combined the best features from all four companies, until the slow decline of steam in the 1960’s which was hastened by the Beeching Axe. This was designed to save the government money and favoured road transport and eventually banned Steam Traction outright in 1968 following the Fifteen Guineas Special in August 1968.

However there has since been a resurgence of steam thanks to a growing number of dedicated rail enthusiasts who worked on the railways and refused to let steam Engines become extinct. These pioneers were responsible for a large number of heritage Railways such as the West Somerset, North York Moors, East Lancashire, Bluebell, Great Central and Severn Valley Railway which sprang up during the 1970’s and were responsible for buying back Steam Engines from scrapyards like Dai Woodham’s in Wales.

The books also feature in depth articles on noteworthy Chief Mechanical Engineers such as sir Nigel Gresley, Charles Collett, Henry Ivatt, sir William Stanier, Thompson, Maunsell and Urie whose innovative designs helped to shape locomotive development throughout the years. Many noteworthy locomotives are featured such as LNER A4 class pacific locomotive 4468 Mallard, LNER A3 class Pacific Locomotive 4472 Flying Scotsman, LNER D49, j94 Austerities, SR PACIFIC 35028 Clan Line, GWR Hall Locomotives, Jones Goods Locomotives, Duke of Gloucester, LMS 6100 Royal Scot, lMS 6201 Princess Elizabeth, GWR 3440 City of Truro, 4771 Green Arrow, King George V, LMS 8f’s, Q1 Class.

There are also twelve DVD’s including Arfon Haines DVD Learning to Steam, these feature hours of archive steam footage, footage of preserved Steam Engines running on Heritage lines and footage from the footplate. Plus a silver plated stationmasters pocket-watch and TWO Stunning prints of LNER 4472 Flying Scotsman and LNER 4468 Mallard.

James Watt FRS FRSE

Scottish inventor, mechanical engineer, and chemist James Watt FRS FRSE was born 30 January 1736 (19 January 1736 OS in Greenock, Renfrewshire. His father was a shipwright, ship owner and contractor, and served as the town’s chief baillie,while his mother, Agnes Muirhead, came from a well educated distinguished family. Watt’s grandfather, Thomas Watt, was a mathematics teacher and baillie to the Baron of Cartsburn. Watt did not attend school regularly; initially he was mostly schooled at home by his mother but later he attended Greenock Grammar School. He exhibited great manual dexterity, engineering skills and an aptitude for mathematics, but is said to have suffered prolonged bouts of ill-health as a child.

When he was eighteen, his mother died and his father’s health began to fail. Watt travelled to London to study instrument-making for a year, then returned to Scotland, settling in Glasgow intent on setting up his own instrument-making business. He made and repaired brass reflecting quadrants, parallel rulers, scales, parts for telescopes, and barometers, among other things. However Because he had not served at least seven years as an apprentice, the Glasgow Guild of Hammermen (which had jurisdiction over any artisans using hammers) blocked his application, despite there being no other mathematical instrument makers in Scotland. However the arrival of astronomical instruments, bequeathed by Alexander Macfarlane to the University of Glasgow which required expert handling, Allowed Watt to bypass this stalemate. These instruments were eventually installed in the Macfarlane Observatory. He was offered the opportunity to set up a small workshop within the university by two of the professors, the physicist and chemist Joseph Black and Adam Smith. At first he worked on maintaining and repairing scientific instruments used in the university, helping with demonstrations, and expanding the production of quadrants. In 1759 he formed a partnership with John Craig, an architect and businessman, to manufacture and sell a line of products including musical instruments and toys. This partnership lasted for the next six years, and employed up to sixteen workers.

While working as an instrument maker at the University of Glasgow, Watt became interested in the technology of steam engines After noticing the steam from a boiling kettle forced the lid to move. His friend, John Robison, then suggested steam could be used as a source of motive power. He realized that contemporary steam engine designs wasted a great deal of energy by repeatedly cooling and reheating the cylinder. Watt introduced a design enhancement, the separate condenser, which avoided this waste of energy and radically improved the power, efficiency, and cost-effectiveness of steam engines. Eventually he adapted his engine to produce rotary motion, greatly broadening its use beyond pumping water. Watt dramatically improved on the efficiency of Thomas Newcomen’s 1712 Newcomen steam engine with his Watt steam engine in 1781, which was fundamental to the changes brought by the Industrial Revolution in both his native Great Britain and the rest of the world.

The design of the Newcomen engine, in use for almost 50 years for pumping water from mines, had hardly changed from its first implementation. Watt began to experiment with steam, though he had never seen an operating steam engine. He tried constructing a model.  He realised the importance of latent heat—the thermal energy released or absorbed during a constant-temperature process—in understanding the engine, which, unknown to Watt, his friend Joseph Black had previously discovered some years before. In 1763, Watt was asked to repair a model Newcomen engine belonging to the university. Even after repair, the engine barely worked. After much experimentation, Watt demonstrated that about three-quarters of the thermal energy of the steam was being wasted heating the engine cylinder on every cycle. Watt decided to condense the steam in a separate chamber apart from the piston, and to maintain the temperature of the cylinder at the same temperature as the injected steam by surrounding it with a “steam jacket.Thus very little energy was absorbed by the cylinder on each cycle, making more available to perform useful work. Sadly Watt had financial difficulties constructing a full scale engine to demonstrate his findings. Luckily backing came from John Roebuck, the founder of the celebrated Carron Iron Works near Falkirk, with whom he now formed a partnership. Roebuck lived at Kinneil House in Bo’ness, during which time Watt worked at perfecting his steam engine, however the Piston and cylinder could not be manufactured with sufficient precision. Watt also worked first as a surveyor, then as a civil engineer for eight years to finance his work. Sadly

Sadly Roebuck went bankrupt, however salvation came in the form of Matthew Boulton, who owned the Soho Manufactory works near Birmingham, and acquired his patent rights. Through Boulton, Watt finally had access to some of the best iron workers in the world.  The difficulty of the manufacture of a large cylinder with a tightly fitting piston was solved by John Wilkinson, who had developed precision boring techniques for cannon making at Bersham, near Wrexham, North Wales. Watt and Boulton formed a hugely successful partnership (Boulton and Watt) which lasted for the next twenty-five years.In 1776, the first engines were installed and working in commercial enterprises. These first engines were used to power pumps and produced only reciprocating motion to move the pump rods at the bottom of the shaft. The design was commercially successful, and for the next five years Watt installed more engines, mostly in Cornwall for pumping water out of mines. These early engines were not manufactured by Boulton and Watt, but were made by others according to drawings made by Watt, who served in the role of consulting engineer. The field of application for the invention was greatly widened when Boulton urged Watt to convert the reciprocating motion of the piston to produce rotational power for grinding, weaving and milling. Although a crank seemed the obvious solution to the conversion Watt and Boulton were stymied by a patent for this, whose holder, James Pickard, and associates proposed to cross-license the external condenser. Watt adamantly opposed this and they circumvented the patent by their sun and planet gear in 1781.

Watt made a number of other improvements and modifications to the steam engine. Such as A double acting engine, in which the steam acted alternately on the two sides of the piston. He also described methods for working the steam “expansively” (i.e., using steam at pressures well above atmospheric). He designed A compound engine, which connected two or more engines, a steam indicator which prevented these primative boilers from exploding and parallel motion which was essential in double-acting engines as it produced the straight line motion required for the cylinder rod and pump, from the connected rocking beam, whose end moves in a circular arc. He also created a throttle valve to control the power of the engine, and a centrifugal governor, all of which made his Steam Engines far more efficient than the Newcomen Engine. In order to minimaze the risk of exploding boilers, Watt restricted his use of high pressure steam and all of his engines used steam at near atmospheric pressure. Watt entered a partnership with Matthew Boulton in 1775. The new firm of Boulton and Watt was eventually highly successful and Watt became a wealthy man.

Watt retired in 1800, the same year that his fundamental patent and partnership with Boulton expired. The famous partnership was transferred to the men’s sons, Matthew Robinson Boulton and James Watt Jr. Watt continued to invent other things before and during his semi-retirement though none was as significant as his steam engine work. He invented and constructed several machines for copying sculptures and medallions. He maintained his interest in civil engineering and was a consultant on several significant projects. He proposed, for example, a method for constructing a flexible pipe to be used for pumping water under the Clyde at Glasgow. He and his second wife travelled to France and Germany, and he purchased an estate in mid-Wales at Doldowlod House, one mile south of Llanwrthwl. In 1816 he took a trip on the paddle-steamer Comet, a product of his inventions, to revisit his home town of Greenock. James Watt’s improvements to the steam engine converted it from a prime mover of marginal efficiency into the mechanical workhorse of the Industrial Revolution. The availability of efficient, reliable motive power made whole new classes of industry economically viable, and altered the economies of continents. This brought about immense social change, attracting millions of rural families to the towns and cities.

English novelist Aldous Huxley (1894–1963) wrote of Watt; “To us, the moment 8:17 A.M. means something – something very important, if it happens to be the starting time of our daily train. To our ancestors, such an odd eccentric instant was without significance – did not even exist. In inventing the locomotive, Watt and Stephenson were part inventors of time.”

Watt Sadly died on 25 August 1819 at his home “Heathfield” in Handsworth, Staffordshire (now part of Birmingham) at the age of 83. He was buried on 2 September in the graveyard of St Mary’s Church, Handsworth. However he received many honours for his pioneering work during his lifetime. In 1784 he was made a fellow of the Royal Society of Edinburgh, and was elected as a member of the Batavian Society for Experimental Philosophy, of Rotterdam in 1787. In 1789 he was elected to the elite group, the Smeatonian Society of Civil Engineers. In 1806 he was conferred the honorary Doctor of Laws by the University of Glasgow. The French Academy elected him a Corresponding Member and he was made a Foreign Associate in 1814. The watt is named after James Watt for his contributions to the development of the steam engine, and was adopted by the Second Congress of the British Association for the Advancement of Science in 1889 and by the 11th General Conference on Weights and Measures in 1960 as the unit of power incorporated in the International System of Units (or “SI”).Boulton and Watt also feature on a Bank of England £50 note. the two industrialists pictured side by side with images of Watt’s steam engine and Boulton’s Soho Manufactory. Quotes attributed to each of the men are inscribed on the note: “I sell here, sir, what all the world desires to have—POWER” (Boulton) and “I can think of nothing else but this machine” (Watt). In 2011 he was one of seven inaugural inductees to the Scottish Engineering Hall of Fame.

Metropolitan Railway

The Metropolitan Railway (also known as the Met opened on 10 January 1863 between Farringdon Station and London Paddington Station. It served London from 1863 to 1933, its main line heading north-west from the capital’s financial heart in the City to what were to become the Middlesex suburbs. Its first line connected the main-line railway termini at Paddington, Euston, and King’s Cross to the City. The first section was built beneath the New Road using the “cut-and-cover” method between Paddington and King’s Cross and in tunnel and cuttings beside Farringdon Road from King’s Cross to near Smithfield, near the City. It opened to the public on 10 January 1863 with gas-lit wooden carriages hauled by steam locomotives, and became the world’s first passenger-carrying designated underground railway.

The line was soon extended from both ends, and northwards via a branch from Baker Street. It reached Hammersmith in 1864, Richmond in 1877 and completed the Inner Circle in 1884, however the most important route was the line north into the Middlesex countryside, where it stimulated the development of new suburbs. Harrow was reached in 1880, and the line eventually extended to Verney Junction in Buckinghamshire, more than 50 miles (80 kilometres) from Baker Street and the centre of London.

Electric traction was introduced in 1905 and by 1907 electric multiple units operated most of the services, though electrification of outlying sections did not occur until decades later. Unlike other railway companies in the London area, the Met developed land for housing, and after World War I promoted housing estates near the railway using the “Metro-land” brand. On 1 July 1933, the Met was amalgamated with the Underground Electric Railways Company of London and the capital’s tramway and bus operators to form the London Passenger Transport Board. Former Met tracks and stations are used by the London Underground’s Metropolitan, Circle, District, Hammersmith & City, Piccadilly, and Jubilee lines, and by Chiltern Railways.