TIM Berners-Lee OM KBE FRS FREng FRSA FRCS

English-American computer scientist and engineer, Sir Timothy John Berners-Lee OM KBE FRS FREng FRSA FBCS was born 8 June 1955 In London, England. His parents Mary Lee Woods and Conway Berners-Lee worked on the first commercially-built computer, the Ferranti Mark 1. He attended Sheen Mount Primary School, and then went on to attend south west London’s Emanuel School from 1969 to 1973, at the time a direct grant grammar school, which became an independent school in 1975. A keen trainspotter as a child, he learnt about electronics from tinkering with a model railway. He studied at The Queen’s College, Oxford from 1973 to 1976, where he received a first-class degree bachelor of arts degree in physics.

After graduation, Berners-Lee worked as an engineer at the telecommunications company Plessey in Poole, Dorset. In 1978, he joined D. G. Nash in Ferndown, Dorset, where he helped create type-setting software for printers. Berners-Lee worked as an independent contractor at CERN from June to December 1980. While in Geneva, he proposed a project based on the concept of hypertext, to facilitate sharing and updating information among researchers. To demonstrate it, he built a prototype system named ENQUIRE. After leaving CERN in late 1980, he went to work at John Poole’s Image Computer Systems, Ltd, in Bournemouth, Dorset. He ran the company’s technical side for three years. The project he worked on was a “real-time remote procedure call” which gave him experience in computer networking. In 1984, he returned to CERN as a fellow. In 1989, CERN was the largest Internet node in Europe, and Berners-Lee saw an opportunity to join hypertext with the Internet:

I just had to take the hypertext idea and connect it to the Transmission Control Protocol and domain name system ideas and—ta-da!—the World Wide Web. Creating the web was really an act of desperation, because the situation without it was very difficult when I was working at CERN. Most of the technology involved in the web, like the hypertext, like the Internet, multifont text objects, had all been designed already. I just had to put them together. It was a step of generalising, going to a higher level of abstraction, thinking about all the documentation systems out there as being possibly part of a larger imaginary documentation system.” This NeXT Computer was used by Berners-Lee at CERN and became the world’s first web server. Berners-Lee wrote his proposal in March 1989 and, in 1990, redistributed it. He used similar ideas to those underlying the ENQUIRE system to create the World Wide Web, for which he designed and built the first Web browser. His software also functioned as an editor (called WorldWideWeb, running on the NeXTSTEP operating system), and the first Web server, CERN HTTPd (short for Hypertext Transfer Protocol daemon).

He is commonly credited with inventing the World Wide Web (abbreviated as WWW or W3, commonly known as the web). The World Wide Web is a series of interlinked hypertext documents accessed via the Internet. With a web browser, one can view web pages that may contain text, images, videos, and other multimedia and navigate between them via hyperlinks. The web was developed between March 1989 and December 1990. Using concepts from his earlier hypertext systems such as ENQUIRE, British engineer Tim Berners-Lee, acomputer scientist and at that time employee of the CERN, now Director of the World Wide Web Consortium (W3C), wrote a proposal in March 1989 for what would eventually become the World Wide Web. The 1989 proposal was meant for a more effective CERN communication system but Berners-Lee eventually realised the concept could be implemented throughout the world. At CERN, a European research organisation nearGeneva straddling the border between France and Switzerland, berners-Lee and Belgian computer scientist Robert Cailliau proposed in 1990 to use hypertext “to link and access information of various kinds as a web of nodes in which the user can browse at will”. Berners-Lee finished the first website in December 1990 and posted the project on the alt.hypertext newsgroup on 7 August 1991

In the May 1970 issue of Popular Science magazine, Arthur C. Clarke predicted that satellites would someday “bring the accumulated knowledge of the world to your fingertips” using a console that would combine the functionality of the photocopier, telephone, television and a small computer, allowing data tyransfer and video conferencing around the globe.In March 1989, Tim Berners-Lee wrote a proposal that referenced ENQUIRE, a database and software project he had built in 1980, and described a more elaborate information management system. With help from Robert Cailliau, he published a more formal proposal (on 12 November 1990) to build a “Hypertext project” called “WorldWideWeb” (one word, also “W3”) as a “web” of “hypertext documents” to be viewed by “browsers” using a client–server architecture. This proposal estimated that a read-only web would be developed within three months and that it would take six months to achieve “the creation of new links and new material by readers, [so that] authorship becomes universal” as well as “the automatic notification of a reader when new material of interest to him/her has become available.” While the read-only goal was met, accessible authorship of web content took longer to mature, with the wiki concept, blogs, Web 2.0 and RSS/Atom.

The proposal was modeled after the SGML reader Dynatext by Electronic Book Technology, a spin-off from the Institute for Research in Information and Scholarship at Brown University. The Dynatext system, licensed by CERN, was a key player in the extension of SGML ISO 8879:1986 to Hypermedia within HyTime, but it was considered too expensive and had an inappropriate licensing policy for use in the general high energy physics community, namely a fee for each document and each document alteration.The CERN datacenter in 2010 housing some WWW serversA NeXT Computer was used by Berners-Lee as the world’s first web server and also to write the first web browser, WorldWideWeb, in 1990. By Christmas 1990, Berners-Lee had built all the tools necessary for a working Web: the first web browser (which was a web editor as well); the first web server; and the first web pages, which described the project itself.The first web page may be lost, but Paul Jones of UNC-Chapel Hill in North Carolina revealed in May 2013 that he has a copy of a page sent to him by Berners-Lee which is the oldest known web page. Jones stored it on a floppy disk and on his NeXT computer.

On 6 August 1991, Berners-Lee posted a short summary of the World Wide Web project on the alt.hypertext newsgroup. This date also marked the debut of the Web as a publicly available service on the Internet, although new users only access it after August 23. For this reason this is considered the internaut’s day. Many newsmedia have reported that the first photo on the web was uploaded by Berners-Lee in 1992, an image of the CERN house band Les Horribles Cernettes taken by Silvano de Gennaro; Gennaro has disclaimed this story, writing that media were “totally distorting our words for the sake of cheap sensationalism.” The first server outside Europe was set up at the Stanford Linear Accelerator Center (SLAC) in Palo Alto, California, to host the SPIRES-HEP database. Accounts differ substantially as to the date of this event. The World Wide Web Consortium says December 1992, whereas SLAC itself claims 1991. This is supported by a W3C document titled A Little History of the World Wide Web.[22]The crucial underlying concept of hypertext originated with older projects from the 1960s, such as the Hypertext Editing System (HES) at Brown University, Ted Nelson’s Project Xanadu, and Douglas Engelbart’s oN-Line System (NLS). Both Nelson and Engelbart were in turn inspired by Vannevar Bush’s microfilm-based “memex”, which was described in the 1945 essay “As We May Think”.

Berners-Lee’s breakthrough was to marry hypertext to the Internet. In his book Weaving The Web, he explains that he had repeatedly suggested that a marriage between the two technologies was possible to members of both technical communities, but when no one took up his invitation, he finally assumed the project himself. In the process, he developed three essential technologies:a system of globally unique identifiers for resources on the Web and elsewhere, the universal document identifier (UDI), later known as uniform resource locator (URL) and uniform resource identifier (URI);the publishing language HyperText Markup Language (HTML);the Hypertext Transfer Protocol (HTTP). The World Wide Web had a number of differences from other hypertext systems available at the time. The web required only unidirectional links rather than bidirectional ones, making it possible for someone to link to another resource without action by the owner of that resource. It also significantly reduced the difficulty of implementing web servers and browsers (in comparison to earlier systems), but in turn presented the chronic problem of link rot. Unlike predecessors such as HyperCard, the World Wide Web was non-proprietary, making it possible to develop servers and clients independently and to add extensions without licensing restrictions. On 30 April 1993, CERN announced that the World Wide Web would be free to anyone, with no fees due. Coming two months after the announcement that the server implementation of the Gopher protocol was no longer free to use, this produced a rapid shift away from Gopher and towards the Web.

An early popular web browser was ViolaWWW for Unix and the X Windowing System. Scholars generally agree that a turning point for the World Wide Web began with the introduction of the Mosaic web browser in 1993, a graphical browser developed by a team at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (NCSA-UIUC), led by Marc Andreessen. Funding for Mosaic came from the U.S. High-Performance Computing and Communications Initiative and the High Performance Computing and Communication Act of 1991, one of several computing developments initiated by U.S. Senator Al Gore. Prior to the release of Mosaic, graphics were not commonly mixed with text in web pages and the web’s popularity was less than older protocols in use over the Internet, such as Gopher and Wide Area Information Servers(WAIS). Mosaic’s graphical user interface allowed the Web to become, by far, the most popular Internet protocol.

The World Wide Web Consortium (W3C) was founded by Tim Berners-Lee after he left the European Organization for Nuclear Research (CERN) in October 1994. It was founded at theMassachusetts Institute of Technology Laboratory for Computer Science (MIT/LCS) with support from the Defense Advanced Research Projects Agency (DARPA), which had pioneered the Internet; a year later, a second site was founded at INRIA (a French national computer research lab) with support from the European Commission DG InfSo; and in 1996, a third continental site was created in Japan at Keio University. By the end of 1994, while the total number of websites was still minute compared to present standards, quite a number of notable websites were already active, many of which are the precursors or inspiration for today’s most popular services. Connected by the existing Internet, other websites were created around the world, adding international standards for domain namesand HTML. Since then, Berners-Lee has played an active role in guiding the development of web standards (such as the markup languages in which web pages are composed), and has advocated his vision of a Semantic Web. The World Wide Web enabled the spread of information over the Internet through an easy-to-use and flexible format. It thus played an important role in popularizing use of the Internet. Although the two terms are sometimes conflated in popular use, World Wide Web is not synonymous with Internet. The web is a collection of documents and both client and server software using Internet protocols such as TCP/IP and HTTP. In 2004 Tim Berners-Lee was knighted by Queen Elizabeth II for his contribution to the World Wide Web.

Alan Turing OBE FRS

British mathematician, logician, cryptanalyst, and computer scientist Alan Turing OBE, FRS was found dead 8 June 1954 after committing suicide. He was Born on June 23rd, 1912 in Maida Vale, and grew up in Hastings. He displayed great individuality from a young age. At 14 he went to Sherborne School in Dorset.Turing subsequently read mathematics at Cambridge,He was completely original thinkerwho shaped the modern world, and assisted in the development of the innovative Manchester computers. He was also highly influential in the development of computer science, providing a formalisation of the concepts of “algorithm” and “computation” with the Turing machine, which played a sinificant role in the creation of the modern computer. Turing is widely considered to be the father of computer science and artificial intelligece.He also became interested in mathematical biology and wrote a paper on the chemical basis of morphogenesis, and predicted oscillating chemical reactions such as the Belousov–Zhabotinsky reaction, which were first observed in the 1960s.

On 4 September 1939 the day after Britain declared war on Germany, Turing reported to Bletchley Park where he worked for the Government Code and Cypher School (GCCS)the forerunner of GCHQ, Britain’s codebreaking centre. For a time he was head of Hut 8, the section responsible for German naval cryptanalysis. Turing led a team whose ingenuity and intellect were turned to the task of breaking German ciphers. He devised a number of techniques for breaking German ciphers and One of Turing’s main contributions whilst there was to invent the Bombe, an electromechanical machine used to find the daily settings of the Enigma machine. as a result he played an absolutely vital part of the British war effort and It is without question that his efforts helped shorten the war significantly, saving the lives of millions of people.He was also a remarkable British hero who helped create the modern world. Now known as the father of computer science, his inventions contributed greatly to the groundwork for the modern computer.

After the war he worked at the National Physical Laboratory, where he created one of the first designs for a stored-program computer, the ACE. In 1948 Turing joined Max Newman’s Computing Laboratory at Manchester University, where he assisted in the development of the Manchester computers and invented a type of theoretical machine now called a Turing Machine, which formalized what it means to compute a number. Turing’s importance extends far beyond Turing Machines. His work deciphering secret codes drastically shortened World War II and pioneered early computer technology.He was also an early innovator in the field of artificial intelligence, and came up with a way to test if computers could think – now known as the Turing Test. Besides this abstract work, he was down to earth; he designed and built real machines, even making his own relays and wiring up circuits. This combination of pure math and computing machines was the foundation of computer science.

Despite his achievements, and valuable contributions to cryptanalysis he was treated appallingly by the British Government and did not receive the recognition and plaudits that he deserved while alive because of his life style choices. A burglary at his home led Turing to admit to police that he was a practicing homosexual, at a time when it was illegal in Britain. This led to his arrest and conviction in 1952 for ‘gross indecency’. He was subsequently forced to choose between imprisonment and chemical castration. He chose chemical castration (treatment with female hormones) as an alternative to prison. As a result of his conviction he lost security clearance and was not allowed to continue his work. Sadly this all proved too much for Turing and On 8 June 1954 just over two weeks before his 42nd birthday, Turing was found dead from cyanide poisoning. An inquest determined that his death was suicide and he had poisoned himself with cyanide.
Thankfully since Turning’s birth most people’s attitudes have changed and most are now far more tolerant of people’s preferences. Since 1966 The US-based Association of Computing Machinery has annually awarded The Turing Award for technical contribution to the computing community. This is the computing world’s highest honour and is considered equivalent to the Nobel prize. On 10 September 2009, following an Internet campaign, British Prime Minister Gordon Brown also made an official public apology on behalf of the British government for “the appalling way he was treated”. There is also A fully functional rebuild of the Bombe which can be found today at Bletchley Park, along with the excellent Turing exhibition.

World Metrology day

World Metrology Day takes place annually on the 20th of May. The date commemorates the anniversary of the signing of the Metre Convention in 1875 which standardised the International System of Units. Metrology is the science of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution’s political motivation to standardise units in France, when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention. This has evolved into the International System of Units (SI) as a result of a resolution at the 11th Conference Generale des Poids et Mesures (CGPM) in 1960.

Metrology is divided into three basic kinds: the definition of units of measurement, the realisation of these units of measurement , and traceability, which is linking measurements made in practice to the reference standards. These overlapping activities are used in varying degrees by the three basic sub-fields of Metrology. The sub-fields are scientific or fundamental metrology, which is concerned with the establishment of units of measurement, Applied, technical or industrial metrology, the application of measurement to manufacturing and other processes in society, and Legal metrology, which covers the regulation and statutory requirements for measuring instruments and the methods of measurement.

In each country, a national measurement system (NMS) exists as a network of laboratories, calibration facilities and accreditation bodies which implement and maintain its metrology infrastructure. The NMS affects how measurements are made in a country and their recognition by the international community, which has a wide-ranging impact in its society (including economics, energy, environment, health, manufacturing, industry and consumer confidence. The effects of metrology on trade and economy are some of the easiest-observed societal impacts. To facilitate fair trade, there must be an agreed-upon system of measurement.

The history of measurement dates back to at least 2900 BC when The first record of a permanent standard, The royal Egyptian cubit was used. The cubit was decreed to be the length of the Pharaoh’s forearm plus the width of his hand, and replica standards were given to builders. The success of a standardised length for the building of the pyramids is indicated by the lengths of their bases differing by no more than 0.05 percent.

Other civilizations produced generally accepted measurement standards, with Roman and Greek architecture based on distinct systems of measurement. The collapse of the empires and the Dark Ages which followed them lost much measurement knowledge and standardisation. Although local systems of measurement were common, comparability was difficult since many local systems were incompatible. England established the Assize of Measures to create standards for length measurements in 1196, and the 1215 Magna Carta included a section for the measurement of wine and beer.

Modern metrology has its roots in the French Revolution. With a political motivation to harmonise units throughout France, a length standard based on a natural source was proposed. In March 1791, the metre was defined. This led to the creation of the decimal-based metric system in 1795, establishing standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure international conformity, the International Bureau of Weights and Measures (French: Bureau International des Poids et Mesures, or BIPM) was established by the Metre Convention. Although the BIPM’s original mission was to create international standards for units of measurement and relate them to national standards to ensure conformity, its scope has broadened to include electrical and photometric units and ionizing radiation measurement standards. The metric system was modernised in 1960 with the creation of the International System of Units (SI) as a result of a resolution at the 11th General Conference on Weights and Measures (French: Conference Generale des Poids et Mesures, or CGP)

Metrology has wide-ranging impacts on a number of sectors, including economics, energy, the environment, health, manufacturing, industry, and consumer confidence. The effects of metrology on trade and the economy are two of its most-apparent societal impacts. To facilitate fair and accurate trade between countries, there must be an agreed-upon system of measurement. Accurate measurement and regulation of water, fuel, food, and electricity are critical for consumer protection and promote the flow of goods and services between trading partners. A common measurement system and quality standards benefit consumer and producer; production at a common standard reduces cost and consumer risk, ensuring that the product meets consumer needs. Transaction costs are reduced through an increased economy of scale. Several studies have indicated that increased standardisation in measurement has a positive impact on GDP. In the United Kingdom, an estimated 28.4 percent of GDP growth from 1921 to 2013 was the result of standardisation; in Canada between 1981 and 2004 an estimated nine percent of GDP growth was standardisation-related, and in Germany the annual economic benefit of standardisation is an estimated 0.72% of GDP.

Legal metrology has reduced accidental deaths and injuries with measuring devices, such as radar guns and breathalyzers, by improving their efficiency and reliability. Measuring the human body is challenging, with poor repeatability and reproducibility, and advances in metrology help develop new techniques to improve health care and reduce costs. Environmental policy is based on research data, and accurate measurements are important for assessing climate change and environmental regulation. Aside from regulation, metrology is essential in supporting innovation, the ability to measure provides a technical infrastructure and tools that can then be used to pursue further innovation. By providing a technical platform which new ideas can be built upon, easily demonstrated, and shared, measurement standards allow new ideas to be explored and expanded upon.

Ludwig Wittgenstein

The Austrian-born philosopher Ludwig Wittgenstein, sadly died 29 April 1951. He was born 26th April 1889 and worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language, and was professor in philosophy at the University of Cambridge from 1939 until 1947. During his lifetime he published just one book review, one article, a children’s dictionary, and the 75-page Tractatus Logico-Philosophicus. In 1999 his posthumously published Philosophical Investigations was ranked as the most important book of 20th-century philosophy, standing out as “…the one crossover masterpiece in twentieth-century philosophy, appealing across diverse specializations and philosophical orientations”. He was Born in Vienna into one of Europe’s wealthiest families, he gave away his entire inheritance. Three of his brothers committed suicide, with Ludwig contemplating it too.

He left academia several times: serving as an officer on the frontline during World War I, where he was decorated a number of times for his courage; teaching in schools in remote Austrian villages, where he encountered controversy for hitting children when they made mistakes in mathematics; and working during World War II as a hospital porter in London, where he told patients not to take the drugs they were prescribed, and where no-one knew he was one of the world’s most famous philosophers. He described philosophy, however, as “the only work that gives me real satisfaction.” His philosophy is often divided between his early period, exemplified by the Tractatus, and later period, articulated in the Philosophical Investigations. The early Wittgenstein was concerned with the logical relationship between propositions and the world, and believed that by providing an account of the logic underlying this relationship he had solved all philosophical problems. The later Wittgenstein rejected many of the conclusions of the Tractatus, arguing that the meaning of words is constituted by the function they perform within any given language-game.

Wittgenstein’s influence has been felt in nearly every field of the humanities and social sciences, yet there are widely diverging interpretations of his thought. In the words of his friend and colleague Georg Henrik von Wright: “He was of the opinion… that his ideas were generally misunderstood and distorted even by those who professed to be his disciples. He doubted he would be better understood in the future. He once said he felt as though he were writing for people who would think in a different way, breathe a different air of life, from that of present-day men.” He is buried at the Ascension Parish Burial Ground in Cambridge. his legacy lives on and In 1999 the Investigations was ranked as the most important book of 20th-century philosophy, standing out as “…the one crossover masterpiece in twentieth-century philosophy, appealing across diverse specializations and philosophical orientations”.

Samuel Morse

Samuel Morse The American contributor to the invention of a single-wire telegraph system and co-inventor of Morse code, was born 27th April in 1791 in Charlestown Massachusetts. He attended the Phillips Academy in Andover, Massachusetts, after which he went on to Yale College where he studied religious philosophy, mathematics and science of horses. While at Yale, he also attended lectures on electricity from Benjamin Silliman and Jeremiah Day, and In 1810, he graduated from Yale with Phi Beta Kappa honours.

Samuel Morse was also an accomplished painter and whilst at Yale He supported himself financially by painting. He expressed some of his beliefs in his painting “Landing of the Pilgrims”, through the depiction of simple clothing as well as the people’s austere facial features. His image captured the psychology of the Federalists; Calvinists from England brought to North America ideas of religion and government, thus linking the two countries. This work also attracted the attention of the notable artist Washington Allston. Later Morse accompanied Allstone on a three-year painting study in England, where he worked to perfect his painting techniques under Allston’s watchful eye. By the end of 1811, he gained admittance to the Royal Academy. He liked the Neo-classical art of the Renaissance particularly the works of Michelangelo and Raphael. After observing and practicing life drawing and absorbing its anatomical demands, the young artist produced his masterpiece, the Dying Hercules. Morse eventually left England on August 21, 1815, to return to the United States and begin his full-time career as a painter.

Between 1815–1825 Morse painted America’s culture and life, including the Federalist former President John Adams, hoping to become part of grander projects as the The Federalists and Anti-Federalists clashed over Dartmouth College. Morse painted portraits of Francis Brown — the college’s president — and Judge Woodward, who was involved in bringing the Dartmouth case before the U.S. Supreme Court. Morse moved to New Haven and was commissioned to paint the Hall of Congress and a portrait of the Marquis de Lafayette, who was a leading French supporter of the American Revolution. From 1830 to 1832, Morse traveled and studied in Europe to improve his painting skills, visiting Italy, Switzerland and France, Some of Morse’s paintings and sculptures are on display at his Locust Grove estate in Poughkeepsie, New York. During his time in Paris, he developed a friendship with the writer James Fennimore Cooper, and On a subsequent visit he also met Louis Daguerre and became interested in the latter’s daguerreotype — the first practical means of photography. In 1825, the city of New York Morse was commissioned to paint a portrait of Gilbert du Motier, marquis de Lafayette, in Washington. Whilst Morse was painting, he received a letter from his father that read one line, “Your dear wife is convalescent”. Morse immediately left Washington for his home at New Haven, leaving the portrait of Lafayette unfinished. Sadly By the time he arrived, his wife had already been buried.

Heartbroken in the knowledge that for days he was unaware of his wife’s failing health and her lonely death, this encouraged Morse to pursue a means of rapid long distance communication. On the sea voyage home in 1832, Morse encountered Charles Thomas Jackson of Boston, a man who was well schooled in electromagnetism. Witnessing various experiments with Jackson’s electromagnet, Morse developed the concept of a single-wire telegraph. However Morse encountered the problem of getting a telegraphic signal to carry over more than a few hundred yards of wire. His breakthrough came from the insights of Professor Leonard Gale, With Gale’s help, Morse introduced extra circuits or relays at frequent intervals and was soon able to send a message a distance of ten miles (16 km) of wire. Morse and Gale were soon joined by a young enthusiastic man, Alfred Vail, who had excellent skills, insights and money. At the Speedwell Ironworks in Morristown, New Jersey, Morse and Vail made the first public demonstration of the electric telegraph on January 11, 1838. and Today The original Morse telegraph, submitted with his patent application, is part of the collections of the National Museum of American History at the Smithsonian Institution

Morse sadly passed away on 2 April 1872 aged 80, and is buried in the Green-Wood Cemetery in Brooklyn, New York. However his legacy lives on and His valuable contributions to science and technology has enabled people to communicate long-distance and saved many lives. Even today Morse code is still the primary language of telegraphy and is still the standard for rhythmic transmission of data.

Ludwig Wittgenstein

The Austrian-born philosopher Ludwig Wittgenstein, was born 26th April 1889. He worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language, and was professor in philosophy at the University of Cambridge from 1939 until 1947. During his lifetime he published just one book review, one article, a children’s dictionary, and the 75-page Tractatus Logico-Philosophicus. In 1999 his posthumously published Philosophical Investigations was ranked as the most important book of 20th-century philosophy, standing out as “…the one crossover masterpiece in twentieth-century philosophy, appealing across diverse specializations and philosophical orientations”. He was Born in Vienna into one of Europe’s wealthiest families, he gave away his entire inheritance. Three of his brothers committed suicide, with Ludwig contemplating it too.

He left academia several times: serving as an officer on the frontline during World War I, where he was decorated a number of times for his courage; teaching in schools in remote Austrian villages, where he encountered controversy for hitting children when they made mistakes in mathematics; and working during World War II as a hospital porter in London, where he told patients not to take the drugs they were prescribed, and where no-one knew he was one of the world’s most famous philosophers. He described philosophy, however, as “the only work that gives me real satisfaction.” His philosophy is often divided between his early period, exemplified by the Tractatus, and later period, articulated in the Philosophical Investigations. The early Wittgenstein was concerned with the logical relationship between propositions and the world, and believed that by providing an account of the logic underlying this relationship he had solved all philosophical problems. The later Wittgenstein rejected many of the conclusions of the Tractatus, arguing that the meaning of words is constituted by the function they perform within any given language-game.

Wittgenstein sadly died 29 April 1951 however his influence has been felt in nearly every field of the humanities and social sciences, yet there are widely diverging interpretations of his thought. In the words of his friend and colleague Georg Henrik von Wright: “He was of the opinion… that his ideas were generally misunderstood and distorted even by those who professed to be his disciples. He doubted he would be better understood in the future. He once said he felt as though he were writing for people who would think in a different way, breathe a different air of life, from that of present-day men.” He is buried at the Ascension Parish Burial Ground in Cambridge. his legacy lives on and In 1999 the Investigations was ranked as the most important book of 20th-century philosophy, standing out as “…the one crossover masterpiece in twentieth-century philosophy, appealing across diverse specializations and philosophical orientations”.

National DNA Day🧬🧬🧬

National DNA Day takes place annually on April 25 to commemorate the publication of papers concerning the structure of DNA On 25 April 1953 by James Watson, Francis Crick, Maurice Wilkins, Rosalind Franklin. DNA Day was first celebrated In the United States on April 25, 2003 by proclamation of both the Senate and the House of Representatives. However, they only declared a one-time celebration, not an annual holiday. Every year from 2003 onward, annual DNA Day celebrations have been organized by the National Human Genome Research Institute (NHGRI), starting as early as April 23 in 2010, April 15 in 2011 and April 20 in 2012. April 25 has since been declared “International DNA Day” and “World DNA Day” by several groups. 

DNA (Deoxyribonucleic acid) is a thread-like chain of nucleotides carrying the genetic instructions used in the growth, development, functioning and reproduction of all known living organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids; alongside proteins, lipids and complex carbohydrates (polysaccharides), they are one of the four major types of macromolecules that are essential for all known forms of life. Most DNA molecules consist of two biopolymer strands coiled around each other to form a double helix.

The two DNA strands are called polynucleotides since they are composed of simpler monomer units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups, pyrimidines and purines. In a DNA molecule, the pyrimidines are thymine and cytosine, the purines are adenine and guanine.

DNA stores biological information. The DNA backbone is resistant to cleavage, and both strands of the double-stranded structure store the same biological information. This information is replicated as and when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not serve as patterns for protein sequences. The two strands of DNA run in opposite directions to each other and are thus antiparallel. Attached to each sugar is one of four types of nucleobases (informally, bases). It is the sequence of these four nucleobases along the backbone that encodes biological information. RNA strands are created using DNA strands as a template in a process called transcription. Under the genetic code, these RNA strands are translated to specify the sequence of amino acids within proteins in a process called translation.

Within eukaryotic cells DNA is organized into long structures called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes. Eukaryotic organisms (animals, plants, fungi and protists) store most of their DNA inside the cell nucleus and some of their DNA in organelles, such as mitochondria or chloroplasts. In contrast prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm. Within the eukaryotic chromosomes, chromatin proteins such as histones compact and organize DNA. These compact structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.

DNA was first isolated by Friedrich Miescher in 1869. Its molecular structure was first identified by James Watson and Francis Crick at the Cavendish Laboratory within the University of Cambridge in 1953, whose model-building efforts were guided by X-ray diffraction data acquired by Raymond Gosling, who was a post-graduate student of Rosalind Franklin. DNA is used by researchers as a molecular tool to explore physical laws and theories, such as the ergodic theorem and the theory of elasticity. The unique material properties of DNA have made it an attractive molecule for material scientists and engineers interested in micro- and nano-fabrication. Among notable advances in this field are DNA origami and DNA-based hybrid materials. In 2003 it was declared that the Human Genome Project was very close to complete, and “the remaining tiny gaps were considered too costly to fill.

Guglielmo Marconi

Often referred to as the father of long distance radio transmission and for his development of Marconi’s law and a radio telegraph system, Italian inventor Guglielmo Marconi was born 25 April in 1874. He is often credited as the inventor of radio, and indeed he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun “in recognition of their contributions to the development of wireless telegraphy”. Much of Marconi’s work in radio transmission was built upon previous experimentation and the commercial exploitation of ideas by others such as Hertz, Maxwell, Faraday, Popov, Lodge, Fessenden, Stone, Bose, and Tesla. As an entrepreneur, businessman, and founder of the The Wireless Telegraph & Signal Company in 1897, Marconi succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists. In 1924, he was ennobled as Marchese Marconi.

Marconi’s development of the Radio Telegraph System has also helped save many lives too. One such device was aboard the RMS Titanic, and The two radio operators aboard the Titanic—Jack Phillips and Harold Bride— who were employed by the Marconi International Marine Communication Company, were able to send distress sgnals Following the collision with the iceberg. As a result survivors were rescued by the RMS Carpathia of the Cunard Line. Also employed by the Marconi Company was David Sarnoff, the only person to receive the names of survivors immediately after the disaster via wireless technology. Wireless communications were reportedly maintained for 72 hours between the Carpathia and Sarnoff, but Sarnoff’s involvement has been questioned by some modern historians. When the Carpathia docked in New York, Marconi went aboard with a reporter from The New York Times to talk with Bride, the surviving operator. On 18 June 1912, Marconi gave evidence to the Court of Inquiry into the loss of the Titanic regarding the marine telegraphy’s functions and the procedures for emergencies at sea. Britain’s postmaster-general summed up, referring to the Titanic disaster, “Those who have been saved, have been saved through one man, Mr. Marconi…and his marvelous invention.”

Durng his lifetime Marconi received many honours and awards for his invention. In 1909, Marconi shared the Nobel Prize in Physics with Karl Braun for his contributions to radio communications. In 1918, he was awarded the Franklin Institute’s Franklin Medal. In 1924, he was made a marquess by King Victor Emmanuel III., thus becoming Marchese Marconi. The Radio Hall of Fame (Museum of Broadcast Communications, Chicago) inducted Marconi soon after the inception of its awards. He was inducted into the New Jersey Hall of Fame in 2009. The Dutch radio academy bestows the Marconi Awards annually for outstanding radio programmes, presenters and stations; the National Association of Broadcasters (US) bestows the annual NAB Marconi Radio Awards also for outstanding radio programs and stations. Marconi was also inducted into the National Broadcasters Hall of Fame in 1977 and A commemorative British two pound coin was released in 2001 celebrating the 100th anniversary of Marconi’s first wireless communication as well as A commemorative silver 5 EURO coin whch was issued by Italy in 2009 honouring the centennial of Marconi’s Nobel Prize. A funerary monument to the effigy of Marconi can also be seen in the Basilica of Santa Croce, Florence but his remains are in Sasso, near Bologna. Marconi’s early experiments in wireless telegraphy were also the subject of two IEEE Milestones; one in Switzerland in 2003 and most recently in Italy in 2011.

The premier collection of Marconi artifacts was held by The General Electric Company, p.l.c. (GEC) of the United Kingdom which later renamed to Marconi plc and Marconi Corporation plc. In December 2004 the extensive Marconi Collection, held at the former Marconi Research Centre at Great Baddow, Chelmsford, Essex UK was gifted to the Nation by the Company via the University of Oxford. This consisted of the BAFTA award-winning MarconiCalling website, some 250+ physical artifacts and the massive ephemera collection of papers, books, patents and many other items. The artifacts are now held by The Museum of the History of Science and the ephemera Archives by the nearby Bodleian Library. The latest release, following three years work at the Bodleian, is the Online Catalogue to the Marconi Archives, released in November 2008.

Ira Gershwin’s lyrics to “They All Laughed” include the line, “They told Marconi wireless was a phony.” The band Tesla references him in “Edison’s Medicine” lyrics: They’ll sell you on Marconi, familiar, but a phony.” The band Jefferson Starship references him in their song We Built This City. The lyrics say: “Marconi plays the mamba, listen to the radio”. The 1955 play Inherit the Wind by Jerome Lawrence and Robert E. Lee includes a reference to Marconi in scene 1. The 1979 play ‘The Man From Mukinupin’ by Dorothy Hewett makes several references to Marconi by the character The Flasher, who imagines he is communicating with Marconi through a box of matches. “Marconi the great one, speak to me!”, “Marconi, Marconi, must I kill?” and “Marconi says I must not frighten the ladies…” The Bermuda rig, developed in the 17th century by Bermudians, became ubiquitous on sailboats around the world in the 20th century. The tall masts and triangular fore-and-aft sails reminded some people of Marconi’s wireless towers, hence the rig became known also as the Marconi rig. There is a sculpture devoted to Marconi in Washington, D.C.

Albert Einstein

German-born theoretical physicist and Nobel Prize laureate, Albert Einstein sadly died 18 April 1955. He was born March 14th, 1879 in Ulm, in the Kingdom of Württemberg in the German Empire. He is Often regarded as the father of modern physics and was one of the most prolific intellects in human history, and is best known for developing the theory of general relativity, E = mc2, which was revolutionary in physics. For this achievement he receiv ed the 1921 Nobel Prize in Physics “for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect”. The latter being pivotal in establishing quantum theory within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He realized, however, that the principle of relativity could also be extended to gravitational fields, and with his subsequent theory of gravitation in 1916, he published a paper on the general theory of relativity. He continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory and the motion of molecules. He also investigated the thermal properties of light which laid the foundation of the photon theory of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a whole.

He was visiting the United States when Adolf Hitler came to power in 1933, and did not go back to Germany, where he had been a professor at the Berlin Academy of Sciences. He settled in the U.S., becoming a citizen in 1940. On the eve of World War II, he helped alert President Franklin D. Roosevelt that Germany might be developing an atomic weapon, and recommended that the U.S. begin similar research; this eventually led to what would become the Manhattan Project. Einstein was in support of defending the Allied forces, but largely denounced using the new discovery of nuclear fission as a weapon. Later, together with Bertrand Russell, Einstein signed the Russell–Einstein Manifesto, which highlighted the danger of nuclear weapons. Einstein was affiliated with the Institute for Advanced Study in Princeton, New Jersey, until his death in 1955.

During his life Einstein published more than 300 scientific papers along with over 150 non-scientific works. His great intelligence and originality have made the word “Einstein” synonymous with genius. In 1922, Einstein was awarded the 1921 Nobel Prize in Physics, “for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect”. This refers to his 1905 paper on the photoelectric effect, “On a Heuristic Viewpoint Concerning the Production and Transformation of Light”, which was well supported by the experimental evidence of that time. The presentation speech began by mentioning “his theory of relativity which had been the subject of lively debate in philosophical circles and also has astrophysical implications.

Einstein also won many awards for his work, including the he Max Planck medal of the German Physical Society In 1929, for extraordinary achievements in theoretical physics. In 1936, Einstein was also awarded the Franklin Institute’s Franklin Medal for his extensive work on relativity and the photo-electric effect. The International Union of Pure and Applied Physics also named 2005 the “World Year of Physics” in commemoration of the 100th anniversary of the publication of the annus mirabilis papers. The Albert Einstein Science Park is located on the hill Telegrafenberg in Potsdam, Germany. The best known building in the park is the Einstein Tower which has a bronze bust of Einstein at the entrance. The Tower is an astrophysical observatory that was built to perform checks of Einstein’s theory of General Relativity.

The Albert Einstein Memorial in central Washington, D.C. is a monumental bronze statue depicting Einstein seated with manuscript papers in hand. The statue, commissioned in 1979, is located in a grove of trees at the southwest corner of the grounds of the National Academy of Sciences on Constitution Avenue. In 1999 Time magazine named Albert Einstein the Person of the Century, ahead of Mahatma Gandhi and Franklin Roosevelt, among others. In the words of a biographer, “to the scientifically literate and the public at large, Einstein is synonymous with genius”. Also in 1999, an opinion poll of 100 leading physicists ranked Einstein the “greatest physicist ever”. A Gallup poll recorded him as the fourth most admired person of the 20th century in the U.S. In 1990, his name was added to the Walhalla temple for “laudable and distinguished Germans”, which is located east of Regensburg, in Bavaria, Germany. The United States Postal Service also honoured Einstein with a Prominent Americans series (1965–1978) 8¢ postage stamp and In 2008, Einstein was inducted into the New Jersey Hall of Fame.

Isambard Kingdom Brunel FRS

Best known for building dockyards, the Great Western Railway, steamships, bridges, tunnels and revolutionising public transport and modern engineering, the British mechanical and Civil Engineer Isambard Kingdom Brunel, FRS was born 9 April 1806.When Brunel was eight he was sent to Dr Morrell’s boarding school in Hove, where he learned the classics. His father, was determined that Brunel should have access to the same high-quality education Which he had enjoyed in his youth in France; accordingly, at the age of 14, the younger Brunel was enrolled first at the College of Caen in Normandy, then at Lycée Henri-Quatre in Paris. Sadly his because his Father Marc sent him to expensive schools, he encountered financial problems, however because he was a Prominent engineer the Government intervened on his behalf. When Brunel completed his studies at Henri-Quatre in 1822, he was due to attend the renowned engineering school École Polytechnique, however Brunel studied under the prominent master clockmaker and horologist Abraham-Louis Breguet instead, after he praised Brunel’s potential in letters to his father.In late 1822, having completed his apprenticeship, Brunel returned to England. Brunel worked for several years as an assistant engineer on the hazardous project to create a tunnel under London’s River Thames near Rotherhithe, alongside his Father, who was chief engineer. However cave-ins and severe flooding in 1828 killed a number of Miners a delayed work, with Brunel narrowly escaping death himself.

During the early part of Brunel’s life, the use of railways began to take off as a major means of transport for goods. This influenced Brunel’s involvement in railway engineering, including railway bridge engineering. In 1833, before the Thames Tunnel was complete, Brunel was appointed chief engineer of the Great Western Railway, one of the wonders of Victorian Britain, running from London to Bristol and later Exeter. The company was founded at a public meeting in Bristol in 1833, and was incorporated by Act of Parliament in 1835. It was Brunel’s vision that passengers would be able to purchase one ticket at London Paddington and travel from London to New York, changing from the Great Western Railway to the Great Western steamship at the terminus in Neyland, South Wales. He surveyed the entire length of the route between London and Bristol himself, with the help of many including his Solicitor Jeremiah Osborne of Bristol Law Firm Osborne Clarke who one occasion rowed Isambard Kingdom Brunel down the River Avon himself to survey the bank of the river for the route. Brunel decided to use a broad gauge of 7 ft 1⁄4 in (2,140 mm) for the track, despite almost all other railways using standard Gauge, because he believed Broad Gauge would offer superior running at high speeds; he also proved through both calculation and a series of trials that his broader gauge was the optimum size for providing both higher speeds and a stable and comfortable ride to passengers, with the wider gauge allowing for larger carriages and thus greater freight capacity.

Drawing on Brunel’s experience with the Thames Tunnel, the Great Western designed many architectural feats of engineering including soaring viaducts such as the one in Ivybridge, specially designed stations, and vast tunnels including the Box Tunnel, which was the longest railway tunnel in the world at that time. Brunel also ordered many Locomotives to his own specification including “North Star” and 20-year-old Daniel Gooch (later Sir Daniel) was appointed as Superintendent of Locomotive Engines. Brunel and Gooch chose to locate their locomotive works at the village of Swindon.

Brunel also designed many bridges including the Clifton Suspension Bridge in Bristol, which spans over 700 ft (210 m), and nominally 200 ft (61 m) above the River Avon. Brunel submitted his designs to a committee headed by Thomas Telford, who rejected all entries, in favour of his own design, however the Public voted in favour of Brunel’s design. Brunel also designed the Maidenhead Railway Bridge. Work also started on the Clifton suspension bridge in 1831, but was suspended due to the Queen Square Riots, However Thanks to colleagues at the Institute of Civil Engineers Work recommenced in 1862 and was completed in 1864, five years after Brunel’s death. The Clifton Suspension Bridge still stands today and over 4 million vehicles traverse it every year.

Brunel also designed the Royal Albert Bridge spanning the River Tamar at Saltash near Plymouth, Somerset Bridge (an unusual laminated timber-framed bridge near Bridgwater, the Windsor Railway Bridge. The Maidenhead Railway Bridge over the Thames in Berkshire is still carrying main line trains to the west, even though today’s trains are about ten times heavier than in Brunel’s time.In 1845 Hungerford Bridge, a suspension footbridge across the Thames near Charing Cross Station in London, was opened. It was replaced by a new railway bridge in 1859, and the suspension chains were used to complete the Clifton Suspension Bridge. Brunel also designed the Royal Albert Bridge in 1855 for the Cornwall Railway, this consists of two main spans of 455 ft (139 m), 100 ft (30 m) above mean high spring tide, plus 17 much shorter approach spans. Opened by Prince Albert on 2 May 1859, it was completed in the year of Brunel’s death.

PART TWO

Brunel’s achievements inspired and ignited the imagination of many technically minded Britons. However After Brunel’s death standard gauge was adopted by all railways in the country. Despite the Great Western’s claim of proof that its broad gauge was the better the decision was made to use Stephenson’s standard gauge, mainly because this had already covered a far greater amount of the country. However, by May 1892 when the broad gauge was abolished the Great Western had already been re-laid as dual gauge (both broad and standard). There is also a larger than life bronze statue of him at Neyland holding a steamship in one hand and a locomotive in the othe

another of Brunel’s interesting use of technical innovations was the atmospheric railway, the extension of the Great Western Railway (GWR) southward from Exeter towards Plymouth, technically the South Devon Railway (SDR), though supported by the GWR. Instead of using locomotives, the trains were moved by Clegg and Samuda’s patented system of atmospheric (vacuum) traction, whereby stationary pumps sucked air from a pipe placed in the centre of the track.The section from Exeter to Newton (now Newton Abbot) was completed on this principle, and trains ran at approximately 68 miles per hour (109 km/h). Pumping stations with distinctive square chimneys were sited at two-mile intervals. Fifteen-inch (381 mm) pipes were used on the level portions, and 22-inch (559 mm) pipes were intended for the steeper gradients.The technology required the use of leather flaps to seal the vacuum pipes. The natural oils were drawn out of the leather by the vacuum, making the leather vulnerable to water, rotting it and breaking the fibres when it froze. It had to be kept supple with tallow, which is attractive to rats. The flaps were eaten, and vacuum operation lasted less than a year, from 1847 (experimental service began in September; operations from February 1848) to 10 September 1849. A number of South Devon Railway engine houses still stand, including that at Totnes (scheduled as a grade II listed monument in 2007 to prevent its imminent demolition, even as Brunel’s bicentenary celebrations were continuing) and at Starcross, on the estuary of the River Exe, which is a striking landmark, and a reminder of the atmospheric railway, also commemorated as the name of the village pub.

In 1835, before the Great Western Railway had opened, Brunel proposed extending its transport network by boat from Bristol across the Atlantic Ocean to New York City. The Great Western Steamship Company was formed by Thomas Guppy for that purpose. It was widely disputed whether it would be commercially viable for a ship powered purely by steam to make such long journeys. Technological developments in the early 1830s—including the invention of the surface condenser, which allowed boilers to run on salt water without stopping to be cleaned—made longer journeys more possible, but it was generally thought that a ship would not be able to carry enough fuel for the trip and have room for a commercial cargo. Brunel formulated the theory that the amount a ship could carry increased as the cube of its dimensions, whereas the amount of resistance a ship experienced from the water as it travelled only increased by a square of its dimensions. This would mean that moving a larger ship would take proportionately less fuel than a smaller ship.

To test this theory, Brunel offered his services for free to the Great Western Steamship Company, which appointed him to its building committee and entrusted him with designing its first ship, the Great Western.When it was built, the Great Western was the longest ship in the world at 236 ft (72 m) with a 250-foot (76 m) keel. The ship was constructed mainly from wood, but Brunel added bolts and iron diagonal reinforcements to maintain the keel’s strength. In addition to its steam-powered paddle wheels, the ship carried four masts for sails. The Great Western embarked on her maiden voyage from Avonmouth, Bristol, to New York on 8 April 1838 with 600 long tons (610,000 kg) of coal, cargo and seven passengers on board. Brunel himself missed this initial crossing, having been injured during a fire aboard the ship as she was returning from fitting out in London.

As the fire delayed the launch several days, the Great Western missed its opportunity to claim title as the first ship to cross the Atlantic under steam power alone. Even with a four-day head start, the competing Sirius arrived only one day earlier and its crew was forced to burn cabin furniture, spare yards and one mast for fuel. In contrast, the Great Western crossing of the Atlantic took 15 days and five hours, and the ship arrived at her destination with a third of its coal still remaining, demonstrating that Brunel’s calculations were correct. The Great Western had proved the viability of commercial transatlantic steamship service, which led the Great Western Steamboat Company to use her in regular service between Bristol and New York from 1838 to 1846. She made 64 crossings, and was the first ship to hold the Blue Riband with a crossing time of 13 days westbound and 12 days 6 hours eastbound. The service was commercially successful enough for a sister ship to be required, which Brunel was asked to design.

Part three

Brunel had become convinced of the superiority of propeller-driven ships over paddle wheels. After tests conducted aboard the propeller-driven steam tug Archimedes, he incorporated a large six-bladed propeller into his design for the 322-foot (98 m) Great Britain, which was launched in 1843.Great Britain is considered the first modern ship, being built of metal rather than wood, powered by an engine rather than wind or oars, and driven by propeller rather than paddle wheel. She was the first iron-hulled, propeller-driven ship to cross the Atlantic Ocean.Her maiden voyage was made in August and September 1845, from Liverpool to New York. In 1846, she was run aground at Dundrum, County Down. She was salvaged and employed in the Australian service.And today she is fully preserved and open to the public in Bristol, UK.

In 1852 Brunel began designing a third ship, larger than her predecessors, intended for voyages to India and Australia. Named The Great Eastern and built at John Scott Russell’s Napier Yard in London, she was cutting-edge technology for her time: almost 700 ft (210 m) long, fitted out with the most luxurious appointments, and capable of carrying over 4,000 passengers. Great Eastern was designed to cruise non-stop from London to Sydney and back (since engineers of the time misunderstood that Australia had no coal reserves), and she remained the largest ship built until the start of the 20th century. Like many of Brunel’s ambitious projects, the ship soon ran over budget and behind schedule in the face of a series of technical problems. Also because Brunel’s engineering innovations were so revolutionary and ahead of their time, the prevailing economic and industrial conditions meant It was several decades before transoceanic steamship travel emerged as a viable industry. Great Eastern set forth on her maiden voyage from Southampton to New York on 17 June 1860. Under Captain Sir James Anderson, the Great Eastern was also deployed as an oceanic telegraph cable-layer playing a significant role in laying the first lasting transatlantic telegraph cable, which enabled telecommunication between Europe and North America.

Brunel became A celebrated engineer in his era and numerous monuments were dedicated to Brunel in London at Temple, Brunel University, Paddington station, Bristol, Plymouth, Swindon, Milford Haven and Saltash. The topmast of the Great Eastern is also used as a flagpole at the entrance to Anfield, Liverpool Football Club’s ground.Contemporary locations bear Brunel’s name, such as Brunel University in London, a shopping centre in Bletchley, Milton Keynes, and a collection of streets in Exeter: Isambard Terrace, Kingdom Mews, and Brunel Close. A road, car park, and school in his home city of Portsmouth are also named in his honour, along with one of the city’s largest public houses There is an engineering lab building at the University of Plymouth named in his honour.

In a 2002 BBC television poll Of the “100 Greatest Britons”, Brunel came second, behind Winston Churchill. Brunel’s life and works have been depicted in numerous books, films and television programs. Perhaps the most recent is the 2003 book and BBC TV series, Seven Wonders of the Industrial World, which included a dramatisation of the building of the Great Eastern. Many of Brunel’s bridges are also still in use, having stood the test of time. Brunel’s first engineering project, the Thames Tunnel, is now part of the London Overground network. The Brunel Engine House at Rotherhithe, which once housed the steam engines that powered the tunnel pumps, now houses the Brunel Museum dedicated to the work and lives of Marc and Isambard Kingdom Brunel. Many of Brunel’s original papers and designs are now held in the Brunel Institute alongside the SS Great Britain in Bristol, and are freely available for researchers.