Thomas Edison-Wizard of Menlo Park

American inventor and businessman Thomas Alva Edison died on October 18, 1931, due to complications of diabetes , in his home, “Glenmont” in Llewellyn Park in West Orange, New Jersey. He was born on February 11, 1847 in Milan, Ohio, and grew up in Port Huron, Michigan. In school, the young Edison’s mind often wandered, and his teacher, the Reverend Engle, was overheard calling him “addled”. This ended Edison’s three months of official schooling. Edison recalled later, “My mother was the making of me. She was so true, so sure of me; and I felt I had something to live for, someone I must not disappoint.” His mother taught him at home. much of his education came from reading R.G. Parker’s School of Natural Philosophy. Edison developed hearing problems at an early age. The cause of his deafness has been attributed to a bout of scarlet fever during childhood and recurring untreated middle-ear infections. Around the middle of his career,

Edison attributed the hearing impairment to being struck on the ears by a train conductor when his chemical laboratory in a boxcar caught fire and he was thrown off the train in Smiths Creek, Michigan, along with his apparatus and chemicals. In 1854 Edison’s family moved to Port Huron, Michigan, He sold candy and newspapers on trains running from Port Huron to Detroit, and he sold vegetables to supplement his income. He also studied qualitative analysis, and conducted chemical experiments on the train until an unfortunate accident. He obtained the right to sell newspapers on the road, and, with the aid of four assistants, he set in type and printed the Grand Trunk Herald, which he sold with his other papers. This began Edison’s long streak of entrepreneurial ventures, as he discovered his talents as a businessman. These talents eventually led him to found 14 companies, including General Electric, which is still one of the largest publicly traded companies in the world.

Thomas Edison began his career as an inventor in Newark, New Jersey, with the automatic repeater and his other improved telegraphic devices, but the invention that first gained him notice was the phonograph in 1877. This accomplishment was so unexpected by the public at large as to appear almost magical. Edison became known as “The Wizard of Menlo Park,” New Jersey.His first phonograph recorded on tinfoil around a grooved cylinder, but had poor sound quality and the recordings could be played only a few times. In the 1880s, a redesigned model using wax-coated cardboard cylinders was produced by Alexander Graham Bell, Chichester Bell, and Charles Tainter. This was one reason that Thomas Edison continued work on his own “Perfected Phonograph.” In 1877–78, Edison invented and developed the carbon microphone used in all telephones along with the Bell receiver until the 1980s. After protracted patent litigation, in 1892 a federal court ruled that Edison and not Emile Berliner was the inventor of the carbon microphone which was also used in radio broadcasting and public address work through the 1920s.

He also developed many other devices that greatly influenced life around the world, including the motion picture camera, and a long-lasting, practical electric light bulb Edison also patented a system for electricity distribution in 1880, which was essential to capitalize on the invention of the electric lamp. Dubbed “The Wizard of Menlo Park” by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large-scale teamwork to the process of invention, and because of that, he is often credited with the creation of the first industrial research laboratory.Edison is the fourth most prolific inventor in history, holding 1,093 US patents in his name, as well as many patents in the United Kingdom, France, and Germany. He is credited with numerous inventions that contributed to mass communication and, in particular, telecommunications.

These included a stock ticker, a mechanical vote recorder, a battery for an electric car, electrical power, recorded music and motion pictures.His advanced work in these fields was an outgrowth of his early career as a telegraph operator. Edison developed a system of electric-power generation and distribution to homes, businesses, and factories – a crucial development in the modern industrialized world. He also developed the first power station on Pearl Street in Manhattan, New York and is credited with designing and producing the first commercially available fluoroscope, a machine that uses X-rays to take radiographs. Until Edison discovered that calcium tungstate fluoroscopy screens produced brighter images than the barium platinocyanide screens originally used by Wilhelm Röntgen, the technology was capable of producing only very faint images, The fundamental design is still in use today.

Edison was active in business Just months before his death, the Electrical transmission for the Lackawanna Railroad inaugurated suburban electric train service from Hoboken to Montclair, Dover, and Gladstone in New Jersey. was by means of an overhead catenary system using direct current, which Edison had championed. Despite his frail condition, Edison was at the throttle of the first electric MU (Multiple-Unit) train to depart Lackawanna Terminal in Hoboken in September 1930, driving the train the first mile through Hoboken yard on its way to South Orange.This fleet of cars would serve commuters in northern New Jersey for the next 54 years until their retirement in 1984. A plaque commemorating Edison’s inaugural ride can be seen today in the waiting room of Lackawanna Terminal in Hoboken, which is presently operated by New Jersey Transit.

Edison was said to have been influenced by a popular fad diet in his last few years; “the only liquid he consumed was a pint of milk every three hours”. He is reported to have believed this diet would restore his health. Edison became the owner of his Milan, Ohio, birthplace in 1906. On his last visit, in 1923, he was reportedly shocked to find his old home still lit by lamps and candles. He purchased Glenmont in 1886 as a wedding gift for Mina. He is buried behind the home. Edison’s last breath is reportedly contained in a test tube at the Henry Ford Museum. Ford reportedly convinced Charles Edison to seal a test tube of air in the inventor’s room shortly after his death, as a memento.


Charles Babbage

Mathematician, philosopher, inventor and mechanical engineer and English Polymath Charles Babbage, FRS sadly died on 18 October 1871, at the age of 79. He was born 26 December 1791. Babbage attended country school inAlphington near Exeter, then attended King Edward VI Grammar School in Totnes, South Devon, but his health forced him back to private tutors for a time Babbage then joined Holmwood academy, in Baker Street, Enfield,Middlesex, The academy’s library kindled Babbage’s love of mathematics. He studied with two more private tutors after leaving the academy. He was brought home, to study at the Totnes school: Babbage was accepted by Cambridge University and arrived at Trinity College, Cambridge, in October 1810, where he formed the Analytical society in 1812 with John Herschel and George Peacock ; Babbage was also a member of The Ghost Club, which investigated supernatural phenomena, and the Extractors Club, dedicated to liberating its members from the madhouse, should any be committed to one .In 1812 Babbage transferred to Peterhouse, Cambridge. He was the top mathematician there, but did not graduate with honours, receiving a degree without examination instead in 1814 after having defended a thesis that was considered blasphemous in the preliminary public disputation;

In 1815 Babbage lectured at the Royal Institution on astronomy and was elected a Fellow of the Royal Society in 1816. After graduation, Babbage and Herschel visited the Society of Arcueil in Paris, meeting leading French mathematicians and physicists and also worked on a basic explanation of the Electrodynamics of Arago’s rotation with Herschel, and Michael Farraday. These are now part of the theory of eddy currents. He also worked on the unification of electromagnetics. Babbage was also interested in the Coarative View of the Various institutions for the Assurance of Lives and calculated Acturial tables for an insurance Company using Equitable Society Mortality Data from 1762. Babbage helped found the Astronomical Society in 1820, whose aims were to reduce astronomical calculations to a more standard form, and publish the data. In 1824 Babbage won the Astronomical Society’s Gold Medal, “for his invention of an engine for calculating mathematical and astronomical tables” to overcome errors made in tables by mechanisation and to improve the Nautical Almanac after decrepencies were found in traditional calculations. Babbage also helped establish a modern postal system, with his friend Thomas Frederick Colby, And introduced the Uniform Fourpenny Post supplanted by the Uniform Penny Post. In 1816 Babbage, Herschel and Peacock published a translation from French of the lectures of Sylvestre Lacroix concerning Calculus, the Formal Power Series which affected functional equations (including the difference equations fundamental to the difference engine) and operator (D-module) methods for differential equations. He also originated the concept of a programmable computer” and invented the first mechanical computer that eventually led to more complex designs.

The analogy of difference and differential equations was notationally changing Δ to D, as a “finite” difference becomes “infinitesimal”. These symbolic directions became popular, as operational calculus, and pushed to the point of diminishing returns. Woodhouse had already founded this second “British Lagrangian School” Babbage worked intensively on functional equations in general, influenced by Arbogast’s ideas. From 1828 to 1839 Babbage was Lucasian Professor of Mathematics at Cambridge. Not a conventional resident don, and inattentive to teaching, he wrote three topical books during this period of his life. He was elected a Foreign Honorary Member of theAmerican Academy of Arts and Sciences in 1832. Babbage planned to lecture in 1831 on political economy. Babbage’s reforming direction Aiming to make university education more inclusive, with universities doing more for research, a broader syllabus and more interest in applications, but the idea was rejected. Another controversy Babbage had with Richard Jones lasted for six years and he never gave another lecture. Babbage also tried to enter politics, his views included disestablishment of the Church of England, a broader political franchise, and inclusion of manufacturers as stakeholders. He twice stood for Parliament as a candidate for the borough of Finsbury. In 1832 he came in third among five candidates, missing out by some 500 votes in the two-member constituency when two other reformist candidates, Thomas Wakley and Christopher Temple, split the vote. Babbage wrote another book Reflections on the Decline of Science and some of its Causes (1830) attacking the establishment and aiming to improve British science, by ousting Davies Gilbert as President of the Royal Society. Babbage also wished to become the junior secretary of the Royal Society, as Herschel was the senior, but failed after antagonizing Humphry Davy. subsequently the British Association for the Advancement of Science (BAAS) was formed in 1831.

Babbage used symbols to express the actions of his Difference and Analytical Engines in his influential book Economy of Machinery and Manufactures, which dealt with the organisation of industrial production. And An essay on the general principles which regulate the application of machinery to manufactures and the mechanical arts, was featured in the Encyclopædia Metropolitana. In his book Babbage developed the schematic classification of machines, whether for Domestic or industrial use andThe book also contained ideas on rational design in factories, and profit sharing and described The Babbage Principal. This discussed the commercial advantages available with more careful division of labour This principal had already been mentioned in the work of Melchiorre Gioia in 1815.The term was introduced in 1974 by Harry Braverman. Related formulations are the “principle of multiples” of Philip Sargant Florence, and the “balance of processes”. Babbage noticed that skilled workers typically spend parts of their time performing tasks that are below their skill level. If the labour process can be divided among several workers, labour costs may be cut by assigning only high-skill tasks to high-cost workers, restricting other tasks to lower-paid workers And that apprenticeship can be taken as fixed cost but returns to scale are available favoring the factory system. He also published a detailed breakdown of the cost structure of book publishing exposing the trade’s profitability,much to the chagrin of many publishers and namedthe organisers of the trade’s restrictive practices.

Babbage’s theories also influenced the 1851 Great Exhibition his views having a strong effect on many. Karl Marx argued that the source of the productivity of the factory system was the combination of the division of labour with machinery but mentioned that the motivation for division of labour was often for the sake of profitability, rather than productivity. Babbage also influenced the economic thinking of John Stuart Mill, George Holyoake, the economist Claude Lucien Bergery, William Jevons and Charles Fourier among others

In 1837, Babbage published On the Power, Wisdom and Goodness of God. A work of natural theology in which Babbage favored uniformitarianism preferring the conception of creation in which natural law dominated, removing the need for “contrivance. It incorporated extracts from related correspondence of Herschel withCharles Lyell. Babbage put forward the thesis that God had the omnipotence and foresight to create as a divine legislator. He could make laws which then produced species at the appropriate times, rather than continually interfering with ad hoc miracles each time a new species was required. The British Association as inspired by the Deutsche Naturforscher-Versammlung, founded in 1822. It rejected romantic science as well as metaphysics, and started to entrench the divisions of science from literature, and professionals from amateurs. Babbage also identified closely with industrialists And Suggested that industrial society was the culmination of human development. In 1838 a clash with Roderick Murchison led to his withdrawal from further involvement and he also resigned as Lucasian professor,

His interests became more focussed, on computation and metrology, and on international contacts And announced A project to tabulate all physical constants (referred to as “constants of nature”, a phrase in itself a neologism), and then to compile an encyclopedic work of numerical information. He was a pioneer in the field of “absolute measurement”.] His ideas followed on from those of Johann Christian Poggendorff, and were mentioned to Brewster in 1832. There were to be 19 categories of constants, and Ian Hacking sees these as reflecting in part Babbage’s “eccentric enthusiasms” Babbage’s paper On Tables of the Constants of Nature and Art was reprinted by the Smithsonian Institution in 1856, with an added note that the physical tables of Arnold Henry Guyot “will form a part of the important work proposed in this article”.Exact measurement was also key to the development of machine tools. Here again Babbage is considered a pioneer, with Henry Maudslay, William Sellers, and Joseph Whitworth

Babbage also met the the Engineers Marc Brunel and Joseph Clement at the Royal Society And introduced them to Isambard Kingdom Brunel in 1830, for a contact with the proposed Bristol & Birmingham Railway. He also carried out studies, around 1838, showing the superiority of the broad gauge for railways, used by Brunel’s Great Western Railway ln 1838, And invented the pilot (also called a cow-catcher), the metal frame attached to the front of locomotives that clears the tracks of obstacles; he also constructed a dynamometer car. His eldest son, Benjamin Herschel Babbage, also worked as an engineer for Brunel on the railways before emigrating to Australia in the 1850s. Babbage also invented an ophthalmoscope, however the optician Thomas Wharton Jones, ignored it and It Was only widely used after being independently invented by Hermann von Helmholtz.

Babbage also decoded Vigenère’s autokey cipher during the Crimean War His discovery being kept a military secret And later wrote a letter anonymously to the Journal of the Society for Arts concerning “Cypher Writing” . Babbage lived and worked for over 40 years at 1 Dorset Street, Marylebone, until he died; he was buried in London’s Kensal Green Cemetery. According to Horsley, Babbage died “of renal inadequacy, secondary to cystitis.” He had declined both a knighthood and baronetcy. He also argued against hereditary peerages, favoring life peerages instead. In 1983 the autopsy report for Charles Babbage was discovered and later published by his great-great-grandson A copy of the original is also available. Half of Babbage’s brain is preserved at the Hunterian Museum in the Royal College of Surgeons in London The other half of Babbage’s brain is on display in the Science Museum, London.

Benoit B.Mandelbrot

French American mathematician Benoît B. Mandelbrot Sadly died in a hospice in Cambridge, Massachusetts, on 14th October 2010 from pancreatic cancer, at the age of 85. He was born 20 November 1924 in Poland, but moved to France with his family when he was a child. Mandelbrot spent much of his life living and working in the United States, and he acquired dual French and American citizenship. Mandelbrot worked on a wide range of mathematical problems, including mathematical physics and quantitative finance, but is best known as the popularizer of fractal geometry. He coined the term fractal and described the Mandelbrot set. Mandelbrot also wrote books and gave lectures aimed at the general public. Mandelbrot spent most of his career at IBM’s Thomas J. Watson Research Center, and was appointed as an IBM Fellow. He later became a Sterling Professor of Mathematical Sciences at Yale University, where he was the oldest professor in Yale’s history to receive tenure. Mandelbrot also held positions at the Pacific Northwest National Laboratory, Université Lille Nord de France, Institute for Advanced Study and Centre National de la Recherche Scientifique.From 1951 onward, Mandelbrot worked on problems and published papers not only in mathematics but in applied fields such as information theory, economics, and fluid dynamics. He became convinced that two key themes, fat tails and self- similar structure, ran through a situation of problems encountered in those fields.

Mandelbrot found that price changes in financial markets did not follow a Gaussian distribution, but rather Lévy stable distributions having theoretically infinite variance. He found, for example, that cotton prices followed a Lévy stable distribution with parameter α equal to 1.7 rather than 2 as in a Gaussian distribution. “Stable” distributions have the property that the sum of many instances of a random variable follows the same distribution but with a larger scale parameter.Mandelbrot also put his ideas to work in cosmology. He offered in 1974 a new explanation of Olbers’ paradox (the “dark night sky” riddle), demonstrating the consequences of fractal theory as a sufficient, but not necessary, resolution of the paradox. He postulated that if the stars in the universe were fractally distributed (for example, like Cantor dust), it would not be necessary to rely on the Big Bang theory to explain the paradox. His model would not rule out a Big Bang, but would allow for a dark sky even if the Big Bang had not occurred. In 1975, Mandelbrot coined the term fractal to describe these structures, and published his ideas in Fractals: Form, Chance and Dimension.While at Harvard University in 1979, Mandelbrot began to study fractals called Julia sets that were invariant under certain transformations of the complex plane. Building on previous work by Gaston Julia and Pierre Fatou, Mandelbrot used a computer to plot images of the Julia sets of the formula z2 − μ. While investigating how the topology of these Julia sets depended on the complex parameter μ he studied the Mandelbrot set fractal that is now named after him. (Note that the Mandelbrot set is now usually defined in terms of the formula z2 + c, so Mandelbrot’s early plots in terms of the earlier parameter μ are left– right mirror images of more recent plots in terms of the parameter c.) In 1982, Mandelbrot expanded and updated his ideas in The Fractal Geometry of Nature. This influential work brought fractals into the mainstream of professional and popular mathematics, as well as silencing critics, who had dismissed fractals as “program artifacts”.

Mandelbrot left IBM in 1987, when IBM decided to end pure research in his division. He joined the Department of Mathematics at Yale, and obtained his first tenured post in 1999, at the age of 75. At the time of his retirement in 2005, he was Sterling Professor of Mathematical Sciences. His awards include the Wolf Prize for Physics in 1993, the Lewis Fry Richardson Prize of the European Geophysical Society in 2000, the Japan Prize in 2003, and the Einstein Lectureship of the American Mathematical Society in 2006.The small asteroid 27500 Mandelbrot was named in his honor. In November 1990, he was made a Knight in the French Legion of Honour. In December 2005, Mandelbrot was appointed to the position of Battelle Fellow at the Pacific Northwest National Laboratory. Mandelbrot was promoted to Officer of the Legion of Honour in January 2006. An honorary degree from Johns Hopkins University was bestowed on Mandelbrot in the May 2010 commencement exercises. Although Mandelbrot coined the term fractal, some of the mathematical objects he presented in The Fractal Geometry of Nature had been previously described by other mathematicians. Before Mandelbrot, they had often been regarded as isolated curiosities with unnatural and non-intuitive properties. Mandelbrot brought these objects together for the first time and turned them into essential tools for the long-stalled effort to extend the scope of science to non-smooth objects in the real world. He highlighted their common properties, such as self-similarity (linear, non-linear, or statistical), scale invariance, and a (usually) non-integer Hausdorff dimension.He also emphasized the use of fractals as realistic and useful models of many “rough” phenomena in the real world. Natural fractals include the shapes of mountains, coastlines and river basins; the structures of plants, blood vessels and lungs; the clustering of galaxies; and Brownian motion. Fractals are found in human pursuits, such as music, art, architecture, and stock market prices. Mandelbrot believed that fractals, far from being unnatural, were in many ways more intuitive and natural than the artificially smooth objects of traditional Euclidean geometry.

Mandelbrot has been called a visionary and a maverick. His informed & passionate style of writing and his emphasis on visual and geometric intuition (supported bythe inclusion of numerous illustrations) made The Fractal Geometry of Nature accessible to non-specialists. The book sparked widespread popular interest in fractals and contributed to chaos theory and other fields of science and mathematics.When visiting the Museu de la Ciència de Barcelona in 1988, he told its director that the painting The Face of War had given him “the intuition about the transcendence of the fractal geometry when making intelligible the omnipresent similitude in the forms of nature”. He also said that, fractally, Gaudí was superior to Van der Rohe.  The mathematician Heinz-Otto Peitgen said Mandelbrot’s impact inside mathematics, and applications in the sciences, made him one of the most important figures of the last 50 years.

World Rabies Day/Louis Pasteur

World Rabies day takes place annually on 28 September, to mark the anniversary of the death of scientist Louis Pasteur who, with the collaboration of his colleagues, developed the first efficacious rabies vaccine. World Rabies Day is an international campaign coordinated by the Global Alliance for Rabies Control, a non-profit organization with headquarters in the United States and the United Kingdom, which is held to raise awareness about the impact of rabies on humans and animals, provide information and advice on how to prevent the disease, and how individuals and organizations can help eliminate the main global sources

World Rabies Day is also observed by the United Nations and has been endorsed by international human and veterinary health organizations such as the World Health Organization the Pan American Health Organization, the World Organisation for Animal Health (OIE), the US Centers for Disease Control and Prevention, and the World Veterinary Association.

French Chemist and microbiologist Louis Pasteur was born December 27, 1822 and became renowned for his discoveries of the principles of vaccination, microbial fermentation and pasteurization. He is remembered for his remarkable breakthroughs in the causes and preventions of diseases, and his discoveries have saved countless lives ever since. He reduced mortality from puerperal fever, and created the first vaccines for rabies and anthrax. His medical discoveries provided direct support for the germ theory of disease and its application in clinical medicine. He is best known to the general public for his invention of the technique of treating milk and wine to stop bacterial contamination, a process now called pasteurization. He is regarded as one of the three main founders of bacteriology, together with Ferdinand Cohn and Robert Koch, and is popularly known as the “father of microbiology”.

Pasteur also made significant discoveries in chemistry, most notably on the molecular basis for the asymmetry of certain crystals and racemization. He was the Director of the Pasteur Institute, established in 1887, till his death on 28 September 1895, and his body lies beneath the institute in a vault covered in depictions of his accomplishments in Byzantine mosaics.


OneWebDay is an annual day of Internet celebration and awareness held on September 22. The stated goal of founder Susan P. Crawford is for OneWebDay to foster and make visible a global constituency that cares about the future of the Internet. The first OneWebDay was held on September 22, 2006. The idea was created by Susan P. Crawford, who was an ICANN board member at the time, in association with other Internet figures such as Doc Searls, David Weinberger, David R. Johnson, Mary Hodder, and David Isenberg, who would all join the board of what would eventually become a 501(c)3 corporation – OneWebDay Inc.

A website was established and a global network of events promoted. The 2006 OneWebDay’s celebration featured speakers Craig Newmark, Scott Heiferman, and Drew Schutte in New York City’s Battery Park.By 2008 OneWebDay had grown to more than 30 international events. In Washington Square Park, New York City, speakers included Crawford, John Perry Barlow, Jonathan Zittrain, Craig Newmark, and Lawrence Lessig. In 2009, Mitch Kapor took over chairmanship of OneWebDay. It was also announced that funding had been granted by the Ford Foundation.

In 2010, it was announced that OneWebDay would be combined with a new Mozilla Foundation year-round initiative called Drumbeat. A number of volunteers took over organizing the 2010 event. A new website and network was established. Events took place in several cities including New York City, Melbourne, Kolkata, Chennai, London, and Pachuca. In 2011, the main event was a presentation in New York City by Bob Frankston – “Infrastructure commons – the future of connectivity”. In 2012 the theme of OneWebDay was advancing local content while In 2013 the theme was accessibility, particularly in remembrance of web-accessibility advocate Cynthia Waddell, who died in April 2013.

In 2014 the theme for OneWebDay was Recognizing Core Internet Values, this included three videos: a TEDx talk by Dave Moskowitz, “The Internet Belongs to Everyone” from the United States State Department, and the Dynamic Coalition on Core Internet Values also gave a talk at the 2014 Internet Governance Forum. In 2015 and 2016 the theme was Connecting the Next Billion, During these events United States Under Secretary for Economic Growth, Energy and the Environment Catherine Novelli gave two speeches ‘Connecting The World’ at the USA-IGF. In 2017 the theme is Open The Pipes, which concerned the need for connectivity for Community Networks. For this event a speech was given by Internet Society CEO/President Kathy Brown at Mobile World Congress in Shanghai.

Autumn Equinox

The 2017 Autumn Equinox occurs in the Northern Hemisphere on 22 September and the Vernal Equinox occurs in the Southern Hemisphere. The equinox is the moment in which the plane of Earth’s equator passes through the center of the Sun’s disk, this occurs twice each year, around 20 March and 23 September. On an equinox, day and night are of approximately equal duration all over the planet. They are not exactly equal, however, due to the angular size of the sun and atmospheric refraction. The word is derived from the Latin aequinoctium, aequus (equal) and nox (genitive noctis) (night). The equinoxes are the only times when the solar terminator (the “edge” between night and day) is perpendicular to the equator. As a result, the northern and southern hemispheres are equally illuminated. The word comes from Latin equi or “equal” and nox meaning “night”.

The equinoxes are also the only times when the subsolar point is on the equator, meaning that the Sun is exactly overhead at a point on the equatorial line. The subsolar point crosses the equator moving northward at the March equinox and southward at the September equinox. The equinoxes, along with solstices, are directly related to the seasons of the year. In the northern hemisphere, the vernal equinox (March) conventionally marks the beginning of spring in most cultures and is considered the New Year in the Persian calendar or Iranian calendars as Nowruz (means new day), while the autumnal equinox (September) marks the beginning of autumn.

When Julius Caesar established the Julian calendar in 45 BC, he set 25 March as the date of the spring equinox. Because the Julian year is longer than the tropical year by about 11.3 minutes on average (or 1 day in 128 years), the calendar “drifted” with respect to the two equinoxes — such that in AD 300 the spring equinox occurred on about 21 March, and by AD 1500 it had drifted backwards to 11 March. This drift induced Pope Gregory XIII to create a modern Gregorian calendar. The Pope wanted to continue to conform with the edicts concerning the date of Easter of the Council of Nicaea of AD 325, which means he wanted to move the vernal equinox to the date on which it fell at that time (21 March is the day allocated to it in the Easter table of the Julian calendar). However, the leap year intervals in his calendar were not smooth (400 is not an exact multiple of 97). This causes the equinox to oscillate by about 53 hours around its mean position. This in turn raised the possibility that it could fall on 22 March, and thus Easter Day might theoretically commence before the equinox. The astronomers chose the appropriate number of days to omit so that the equinox would swing from 19 to 21 March but never fall on the 22nd (although it can in a handful of years fall early in the morning of that day in the Far East).

Day is usually defined as the period when sunlight reaches the ground in the absence of local obstacles. On the day of the equinox, the center of the Sun spends a roughly equal amount of time above and below the horizon at every location on the Earth, so night and day are about the same length. Sunrise and sunset can be defined in several ways, but a widespread definition is the time that the top limb of the sun is level with the horizon. With this definition, the day is longer than the night at the equinoxes. In sunrise/sunset tables, the assumed semidiameter (apparent radius) of the Sun is 16 minutes of arc and the atmospheric refraction is assumed to be 34 minutes of arc. Their combination means that when the upper limb of the Sun is on the visible horizon, its centre is 50 minutes of arc below the geometric horizon, which is the intersection with the celestial sphere of a horizontal plane through the eye of the observer. These effects make the day about 14 minutes longer than the night at the equator and longer still towards the poles. The real equality of day and night only happens in places far enough from the equator to have a seasonal difference in day length of at least 7 minutes, actually occurring a few days towards the winter side of each equinox.

The times of sunset and sunrise vary with the observer’s location (longitude and latitude), so the dates when day and night are equal also depend upon the observer’s location. At the equinoxes, the rate of change for the length of daylight and night-time is the greatest. At the poles, the equinox marks the transition from 24 hours of nighttime to 24 hours of daylight (or vice versa). The word equilux is sometimes (but rarely) used to mean a day in which the durations of light and darkness are equal. In the half-year centered on the June solstice, the Sun rises north of east and sets north of west, which means longer days with shorter nights for the northern hemisphere and shorter days with longer nights for the southern hemisphere. In the half-year centered on the December solstice, the Sun rises south of east and sets south of west and the durations of day and night are reversed. Also on the day of an equinox, the Sun rises everywhere on Earth (except at the poles) at about 06:00 and sets at about 18:00 (local solar time) however these times are not exact. The autumnal equinox is at ecliptic longitude 180° and at right ascension 12h.

The upper culmination of the vernal point is considered the start of the sidereal day for the observer. The hour angle of the vernal point is, by definition, the observer’s sidereal time. Using the current official IAU constellation boundaries – and taking into account the variable precession speed and the rotation of the celestial equator – the equinoxes shift through the constellations as follows (expressed in astronomical year numbering in which the year 0 = 1 BC, −1 = 2 BC, etc.). One effect of equinoctial periods is the temporary disruption of communications satellites. For all geostationary satellites, there are a few days around the equinox when the sun goes directly behind the satellite relative to Earth (i.e. within the beam-width of the ground-station antenna) for a short period each day. The Sun’s immense power and broad radiation spectrum overload the Earth station’s reception circuits with noise and, depending on antenna size and other factors, temporarily disrupt or degrade the circuit. The duration of those effects varies but can range from a few minutes to an hour. (For a given frequency band, a larger antenna has a narrower beam-width and hence experiences shorter duration “Sun outage” windows)

Michael Faraday

English Scientist Michael Faraday FRS was born 22 September 1791 in Newington Butts. The young Michael Faraday, received little formal education and had to educate himself.At fourteen he became the apprentice to George Riebau, a local bookbinder and bookseller in Blandford Street.During his seven-year apprenticeship he read many books, including Isaac Watts’ The Improvement of the Mind, and he enthusiastically implemented the principles and suggestions contained therein. At this time he also developed an interest in science, especially in electricity. Faraday was particularly inspired by the book Conversations on Chemistry by Jane Marcet.

In 1812, after his apprenticeship, Faraday attended lectures by the eminent English chemist Humphry Davy of the Royal Institution and Royal Society, and John Tatum, founder of the City Philosophical Society. Faraday subsequently sent Davy a three-hundred-page book based on notes that he had taken during these lectures. Davy’s reply was immediate, kind, and favourable. In 1813, Davy employed Faraday as Chemical Assistant at the Royal Institution on Very soon Davy entrusted Faraday with preparation of nitrogen trichloride samples, and they both became injured in an explosion of this very sensitive substance.

In the class-based English society of the time, Faraday was not considered a gentleman. When Davy set out on a long tour of the continent in 1813–15, his valet did not wish to go. Instead, Faraday went as Davy’s scientific assistant, and was asked to act as Davy’s valet until a replacement could be found in Paris. Faraday was forced to fill the role of valet as well as assistant throughout the trip Making Faraday so miserable that he contemplated giving up science altogether. The trip did, however, give him access to the scientific elite of Europe and exposed him to a host of stimulating ideas

Faraday married Sarah Barnard They met through their families at the Sandemanian church, and he confessed his faith to the Sandemanian congregation the month after they were married. They had no children. Faraday was a devout Christian; his Sandemanian denomination was an offshoot of the Church of Scotland. Well after his marriage, he served as deacon and for two terms as an elder in the meeting house of his youth. His church was located at Paul’s Alley in the Barbican. This meeting house was relocated in 1862 to Barnsbury Grove, Islington; this North London location was where Faraday served the final two years of his second term as elder prior to his resignation from that post. Biographers have noted that “a strong sense of the unity of God and nature pervaded Faraday’s life and work.”

In June 1832, the University of Oxford granted Faraday a Doctor of Civil Law degree (honorary). During his lifetime, he was offered a knighthood in recognition for his services to science. He twice refused to become President of the Royal Society. He was elected a foreign member of the Royal Swedish Academy of Sciences in 1838, and was one of eight foreign members elected to the French Academy of Sciences in 1844. In 1849 he was elected as associated member to the Royal Institute of the Netherlands, which two years later became the Royal Netherlands Academy of Arts and Sciences and he was subsequently made foreign member. Faraday suffered a nervous breakdown in 1839 but eventually returned to his electromagnetic investigations. In 1848, as a result of representations by the Prince Consort, Faraday was awarded a grace and favour house in Hampton Court. When asked by the British government to advise on the production of chemical weapons for use in the Crimean War (1853–1856), Faraday refused to participate citing ethical reasons. Faraday died at his house at Hampton Court on 25 August 1867, aged 75. He had previously turned down burial in Westminster Abbey, but he has a memorial plaque there, near Isaac Newton’s tomb. Faraday was interred in the dissenters’ (non-Anglican) section of Highgate Cemetery.

Faraday was one of the most influential scientists in history. He contributed to the fields of electromagnetism and electrochemistry. His main discoveries include those of electromagnetic induction, diamagnetism and electrolysis.It was by his research on the magnetic field around a conductor carrying a direct current that Faraday established the basis for the concept of the electromagnetic field in physics. Faraday also established that magnetism could affect rays of light and that there was an underlying relationship between the two phenomena. He similarly discovered the principle of electromagnetic induction, diamagnetism, and the laws of electrolysis. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts that electricity became practical for use in technology.

As a chemist, Faraday discovered benzene, investigated the clathrate hydrate of chlorine, invented an early form of the Bunsen burner and the system of oxidation numbers, and popularised terminology such as anode, cathode, electrode, and ion. Faraday ultimately became the first and foremost Fullerian Professor of Chemistry at the Royal Institution of Great Britain, a lifetime position. Albert Einstein kept a picture of Faraday on his study wall, alongside pictures of Isaac Newton and James Clerk Maxwell. Physicist Ernest Rutherford stated; “When we consider the magnitude and extent of his discoveries and their influence on the progress of science and of industry, there is no honour too great to pay to the memory of Faraday, one of the greatest scientific discoverers of all time”.