Benjamin Franklin FRS FRSE

American polymath Benjamin Franklin FRS FRSE was born January 17, 1706. He is considered one of the Founding Fathers of the United States and was a leading author, printer, political theorist, politician, freemason, postmaster, scientist, inventor, humorist, civic activist, statesman, and diplomat. As a scientist, he was a major figure in the American Enlightenment and the history of physics for his discoveries and theories regarding electricity. As an inventor, he is known for the lightning rod, bifocals, and the Franklin stove, among other inventions. He founded many civic organizations, including the Library Company, Philadelphia’s first fire department and the University of Pennsylvania.

Franklin earned the title of “The First American” for his early and indefatigable campaigning for colonial unity, initially as an author and spokesman in London for several colonies. As the first United States Ambassador to France, he exemplified the emerging American nation. Franklin was foundational in defining the American ethos as a marriage of the practical values of thrift, hard work, education, community spirit, self-governing institutions, and opposition to authoritarianism both political and religious, with the scientific and tolerant values of the Enlightenment. In the words of historian Henry Steele Commager, “In a Franklin could be merged the virtues of Puritanism without its defects, the illumination of the Enlightenment without its heat.” To Walter Isaacson, this makes Franklin “the most accomplished American of his age and the most influential in inventing the type of society America would become.

Franklin became a successful newspaper editor and printer in Philadelphia, the leading city in the colonies, publishing the Pennsylvania Gazette at the age of 23. He became wealthy publishing this and Poor Richard’s Almanack, which he authored under the pseudonym “Richard Saunders”. After 1767, he was associated with the Pennsylvania Chronicle, a newspaper that was known for its revolutionary sentiments and criticisms of British policies.

He pioneered and was first president of Academy and College of Philadelphia which opened in 1751 and later became the University of Pennsylvania. He organized and was the first secretary of the American Philosophical Society and was elected president in 1769. Franklin became a national hero in America as an agent for several colonies when he spearheaded an effort in London to have the Parliament of Great Britain repeal the unpopular Stamp Act. An accomplished diplomat, he was widely admired among the French as American minister to Paris and was a major figure in the development of positive Franco-American relations. His efforts proved vital for the American Revolution in securing shipments of crucial munitions from France.

He was promoted to deputy postmaster-general for the British colonies in 1753, having been Philadelphia postmaster for many years, and this enabled him to set up the first national communications network. During the revolution, he became the first United States Postmaster General. He was active in community affairs and colonial and state politics, as well as national and international affairs. From 1785 to 1788, he served as governor of Pennsylvania. He initially owned and dealt in slaves but, by the 1750s, he argued against slavery from an economic perspective and became one of the most prominent abolitionists.

Benjamin Franklin sadly died April 17, 1790, however His colorful life and legacy of scientific and political achievement, and his status as one of America’s most influential Founding Fathers, have seen Franklin honored more than two centuries after his death on coinage and the $100 bill, warships, and the names of many towns, counties, educational institutions, and corporations, as well as countless cultural references.
His birth date is also celebrated at Kid Inventors Day due to the fact that Benjamin Franklin also invented the first swim flippers when he was 12 years old.

Nicolas Steno

Often considered the father of geology and stratigraphy, Danish Catholic bishop and scientist Blessed Nicolas Steno was born 11 January in 1638 in Copenhagen. His pioneering research in both anatomy and geology has led to a greater understanding in both, and he was also beatified by Pope John Paul II in 1988. He was the son of a Lutheran goldsmith who worked regularly for King Christian IV of Denmark, but grew up in isolation during his childhood, because of an unknown disease. In 1644 his father died, after which his mother married another goldsmith. Across the street lived Peder Schumacher (who would later offer Steno a post as professor in Copenhagen). After completing his university education, Steno set out to travel through Europe, In the Netherlands, France, Italy and Germany he came into contact with prominent physicians and scientists. These influences led him to use his own powers of observation to make important scientific discoveries. At a time when scientific questions were mostly answered by appeal to ancient authorities, Steno was bold enough to trust his own eyes, even when his observations differed from traditional doctrines.

He studied anatomy focusing again on the Lymphatic system and discovered a previously undescribed structure, the “ductus stenonianus” (the duct of the parotid salivary gland) in sheep, dog and rabbit heads. Steno’s name is associated with this structure. Within a few months Steno moved to Leiden, where he met the students Jan Swammerdam, Frederik Ruysch, Reinier de Graaf, Franciscus de le Boe Sylvius, a famous professor, and Baruch Spinoza. At the time Descartes was publishing on the working of the brain, and Steno did not think his explanation of the origin of tears was correct. Steno studied the heart, and determined that it was an ordinary muscle.

He later travelled to Saumur and Montpellier, where his work was introduced to the Royal Society. In Pisa, Steno met the Grand Duke of Tuscany, who supported arts and science. Steno was invited to live in the Palazzo Vecchio, he also went to Rome and met Alexander VII and Marcello Malpighi. As an anatomist in the hospital Steno focused on the muscular system and the nature of muscle contraction. He also became a member of Accademia del Cimento in Florence. Like Vincenzio Viviani, Steno used geometry to show that a contracting muscle changes its shape but not its volume.

Steno also dissected a sharks head and noted that the shark’s teeth bore a striking resemblance to certain stony objects, found embedded within rock formations. at the time these were known as glossopetrae or “tongue stones” by Ancient authorities, such as the Roman author Pliny the Elder, who had suggested in his book Naturalis Historia that these stones had fallen from the sky or from the Moon, while Others thought, that fossils grew natuarally in the rocks. Fabio Colonna, however, had already shown in a convincing way that glossopetrae were shark teeth and Steno added to the discussion on the differences in composition between glossopetrae and living sharks’ teeth, arguing that the chemical composition of fossils could be altered without changing their form, using the contemporary corpuscular theory of matter.

This led him to the question of how any solid object could come to be found inside another solid object, such as a rock or a layer of rock. The “solid bodies within solids” that attracted Steno’s interest included not only fossils, as we would define them today, but minerals, crystals, encrustations, veins, and even entire rock layers or strata. He published his geologic studies in De solido intra solidum naturaliter contento dissertationis prodromus, or Preliminary discourse to a dissertation on a solid body naturally contained within a solid in 1669. Steno was not the first to identify fossils as being from living organisms; his contemporaries Robert Hooke and John Ray also argued that fossils were the remains of once-living organisms.

Steno, in his Dissertationis prodromus is credited with three of the defining principles of the science of stratigraphy: the law of superposition, the principle of original horizontality and the principle of cross-cutting discontinuities. These principles were applied and extended in 1772 by Jean-Baptiste L. Romé de l’Isle. Steno’s landmark theory that the fossil record was a chronology of different living creatures in different eras was a sine qua non for Darwin’s theory of natural selection. Despite Having been brought up in the Lutheran faith, Steno also questioned its teachings, and After making comparative theological studies, and by using his natural observational skills, he decided that Catholicism, rather than Lutheranism, provided more sustenance for his constant inquisitiveness. Steno converted to Catholicism. In 1675 Steno was ordained a priest. Athanasius Kircher expressly asked why Steno had left science and became one of the leading figures in the Counter-Reformation.

In 1684 Steno moved to Hamburg and became involved in the study of the brain and the nerve system with an old friend Dirck Kerckring. Steno was invited to Schwerin. To test his theory Steno dressed like a poor man in an old cloak and drove in an open carriage in snow and rain. Living four days a week on bread and beer, he became emaciated. When Steno had fulfilled his mission, he wanted to go back to Italy. Sadly though Steno died whilst in Germany on 5th December 1686, His corpse was shipped by Kerckring to Florence and buried in the Basilica of San Lorenzo close to his protectors, the De’ Medici family. In 1953 his grave was discovered, and the corpse was reburied after a procession through the streets of the city.

The Steno Museum in Århus, Denmark, is named after Steno, and holds exhibitions on the history of science and medicine, and also has a planetarium and a medicinal herb garden. Impact craters on Mars and the Moon have also been named in his honour. In 1950 the “Niels Steensens Gymnasium”, a Catholic preparatory school, was founded on a Jesuit monastery in Copenhagen. The Steno Diabetes Center, a research and teaching hospital dedicated to diabetes in Gentofte, Denmark, was also named after Nicolas Steno and The Istituto Niels Stensen, in Florence, is also dedicated to his memory.

Nikola Tesla

erbian-American inventor, electrical engineer, mechanical engineer, physicist, and futurist Nikola Tesla passed away on 7 January 1943 in room 3327 of the New Yorker Hotel. He was born 10 July 1856 in the village Smiljan, Lika county, Serbia and raised in the Austrian Empire. Tesla received an advanced education in engineering and physics in the 1870s and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. In 1881, Tesla moved to Budapest, Hungary, to work under Tivadar Puskás at a telegraph company, the Budapest Telephone Exchange. Upon arrival, Tesla realized that the company, then under construction, was not functional, so he worked as a draftsman in the Central Telegraph Office instead. Within a few months, the Budapest Telephone Exchange became functional, and Tesla was allocated the chief electrician and made many improvements to the Central Station equipment including the improvement of a telephone repeater or amplifier, which was never patented nor publicly described.

In 1882, Tivadar Puskás got Tesla another job in Paris with the Continental Edison Company.Tesla began working in what was then a brand new industry, installing indoor incandescent lighting citywide in the form of an electric power utility. The company had several subdivisions and Tesla worked at the Société Electrique Edison, the division in the Ivry-sur-Seine suburb of Paris in charge of installing the lighting system. There he gained a great deal of practical experience in electrical engineering. Management took notice of his advanced knowledge in engineering and physics and soon had him designing and building improved versions of generating dynamos and motors.They also sent him on to troubleshoot engineering problems at other Edison utilities being built around France and in Germany.

He emigrated to the United States in 1884, And got a job at the Edison Machine Works in New York City however he left in 1885 and began working on patenting an arc lighting system, In March 1885, he met with patent attorney Lemuel W. Serrell, the same attorney used by Edison, to obtain help with submitting the patents. Serrell introduced Tesla to two businessmen, Robert Lane and Benjamin Vail, who agreed to finance an arc lighting manufacturing and utility company in Tesla’s name, the Tesla Electric Light & Manufacturing. Tesla obtained patents for an improved DC generator, which was installed in Rahway, New Jersey. Tesla new system gained notice in the technical press, which commented on its advanced features. However the Investors decided against Tesla’s idea and formed a new utility company, abandoning Tesla’s company and leaving the inventor penniless Tesla even lost control of the patents he had generated.

In 1886, Tesla met Alfred S. Brown, a Western Union superintendent, and New York attorney Charles F. Peck andbased on Tesla’s new idea’s for electrical equipment, including a thermo-magnetic motor idea,they agreed to back the inventor financially and handle his patents. Together they formed the Tesla Electric Company in1887, And set up a laboratory for Tesla at 89 Liberty Street in Manhattan. In 1887, Tesla developed an induction motor that ran on alternating current, a power system format that was rapidly expanding in Europe and the United States because of its advantages in long-distance, high-voltage transmission. The motor used polyphase current, which generated a rotating magnetic field to turn the motor. This innovative electric motor, patented in May 1888, was a simple self-starting design that did not need a commutator, thus avoiding sparking and the need for constantly servicing and replacing mechanical brushes. Physicist William Arnold Anthony tested the motor and Electrical World magazine editor Thomas Commerford Martin arranged for Tesla to demonstrate his alternating current motor on 16 May 1888 at the American Institute of Electrical Engineers. George Westinghouse was also working on a device similar device To Tesla’s polyphase induction motor and transformer and Westinghouse also hired Tesla for one year to be a consultant at the Westinghouse Electric & Manufacturing Company’s Pittsburgh labs. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company would eventually market.

In 1889, Tesla traveled to the 1889 Exposition Universelle in Paris and learned of Heinrich Hertz’ 1886–88 experiments that proved the existence of electromagnetic radiation, including radio waves. Tesla decided to explore it by repeating and then expanding on these experiments, Tesla tried powering a Ruhmkorff coil with a high speed alternator he had been developing as part of an improved arc lighting system but found that the high frequency current overheated the iron core and melted the insulation between the primary and secondary windings in the coil. To fix this problem Tesla came up with his Tesla coil with an air gap instead of insulating material between the primary and secondary windings and an iron core that could be moved to different positions in or out of the coil.

After 1890, Tesla experimented with transmitting power by inductive and capacitive coupling using high AC voltages generated with his Tesla coil. He attempted to develop a wireless lighting system based on near-field inductive and capacitive coupling and conducted a series of public demonstrations where he lit Geissler tubes and even incandescent light bulbs from across a stage. In 1893 at St. Louis, Missouri, the Franklin Institute in Philadelphia, Pennsylvania and the National Electric Light Association, Tesla told onlookers that he was sure a system like his could eventually conduct “intelligible signals or perhaps even power to any distance without the use of wires” by conducting it through the Earth. Tesla served as a vice-president of the American Institute of Electrical Engineers from 1892 to 1894, the forerunner of the modern-day IEEE (along with the Institute of Radio Engineers).

Tesla also conducted a range of experiments with mechanical oscillators/generators, electrical discharge tubes, and early X-ray imaging. He also built a wireless-controlled boat, one of the first ever exhibited. Tesla became well known as an inventor And Throughout the 1890s, Tesla experimented with wireless lighting and worldwide wireless electric power distribution in his high-voltage, high-frequency power experiments in New York and Colorado Springs. In 1893, he Worked on a device enabling wireless communication and tried to put these ideas to practical use in his unfinished Wardenclyffe Tower project, an intercontinental wireless communication and power transmitter.

After Wardenclyffe, Tesla went on to try and develop a series of inventions in the 1910s and 1920s with varying degrees of success. He is best known for his contributions to the design of the modern alternating current (AC) electricity supply system. Tesla gained experience in telephony and electrical engineering before emigrating to the United States in 1884 to work for Thomas Edison. He soon struck out on his own with financial backers, setting up laboratories/companies to develop a range of electrical devices. His patented AC induction motor and transformer were licensed by George Westinghouse, who also hired Tesla as a consultant to help develop apower system using alternating current. Tesla is also known for his high-voltage, high-frequency power experiments in New York and Colorado Springs which included patented devices and theoretical work used in the invention of radio communication, for his X-ray experiments, and for his ill-fated attempt at intercontinental wireless transmission in his unfinished Wardenclyffe Towerproject.

Tesla’s achievements and his abilities as a showman demonstrating his seemingly miraculous inventions made him world-famous.Although he made a great deal of money from his patents, he spent a lot on numerous experiments. He lived for most of his life in a series of New York hotels although the end of his patent income and eventual bankruptcy led him to live in diminished circumstances. Despite this Tesla still continued to invite the press to parties he held on his birthday to announce new inventions he was working and make (sometimes unusual) statements. Because of his pronouncements and the nature of his work over the years, Tesla gained a reputation in popular culture as the archetypal “mad scientist”.

Sadly after his death Tesla’s work fell into relative obscurity, but since the 1990s, his reputation has experienced a comeback in popular culture. His work and reputed inventions are also at the center of many conspiracy theories and have also been used to support various pseudosciences, UFO theories and New Age occultism. In 1960, in honor of Tesla, the General Conference on Weights and Measures for the International System of Units dedicated the term “tesla” to the SI unit measure for magnetic field strength. There is also a range of Electric Cars named after him.

Louis Pasteur

French biologist, microbiologist and chemist Louis Pasteur was born on December 27, 1822, in Dole, Jura, France, to a Catholic family of a poor tanner. He was the third child of Jean-Joseph Pasteur and Jeanne-Etiennette Roqui. The family moved to Marnoz in 1826 and then to Arbois in 1827. Pasteur entered primary school in 1831 and was an average student in his early years, and not particularly academic, as his interests were fishing and sketching. He drew many pastels and portraits of his parents, friends and neighbors. Pasteur attended secondary school at the Collège d’Arbois. In October 1838, he left for Paris to join the Pension Barbet, but became homesick and returned in November.

In 1839, he entered the Collège Royal at Besançon to study philosophy and earned his Bachelor of Letters degree in 1840. He was appointed a tutor at the Besançon college while continuing a degree science course with special mathematics. He managed to pass the baccalauréat scientifique (general science) degree in 1842 from Dijon but with a mediocre grade in chemistry. In 1842, Pasteur took the entrance test for the École Normale Supérieur. He also attended classes at the Lycée Saint-Louis and lectures of Jean-Baptiste Dumas at the Sorbonne. In 1843, he passed his exam and entered the École Normale Supérieure and In 1845 he received the licencié ès sciences (Master of Science) degree.

In 1846, he was appointed professor of physics at the Collège de Tournon (now called Lycée Gabriel-Faure) in Ardèche, but the chemist Antoine Jérôme Balard wanted him back at the École Normale Supérieure as a graduate laboratory assistant (agrégé préparateur). He joined Balard and simultaneously started his research in crystallography and in 1847, he submitted two theses, in chemistry and physics He became professor of physics at the Dijon Lycée in 1848 and professor of chemistry at the University of Strasbourg, and in May 29, 1849 he married Marie Laurent, daughter of the university’s rector.

He made a number of remarkable breakthroughs in the causes and prevention of diseases, He reduced mortality from puerperal fever, and created the first vaccines for rabies and anthrax. He disproved the doctrine of spontaneous generation and investigated tartaric acid and optical isomers. He made significant discoveries in chemistry, most notably on the molecular basis for the asymmetry of certain crystals and racemization . He also invented a technique for treating milk and wine to stop bacterial contamination, a process now called pasteurization And discovered a fundamental principle in the structure of organic compounds. He also performed experiments that showed that without contamination, microorganisms could not develop and demonstrated that in sterilized and sealed flasks nothing ever developed, however in sterilized but open flasks microorganisms could grow.

Pasteur was appointed professor of chemistry at the University of Strasbourg in 1848, and became the chair of chemistry in 1852 and In 1854, he was named dean of the new faculty of sciences at University of Lille, where he began his studies on fermentation. In 1857, he moved to Paris as the director of scientific studies at the École Normale Supérieure where he took control from 1858 to 1867 and In 1863, he was appointed professor of geology, physics, and chemistry at the École nationale supérieure des Beaux-Arts Until resigning in 1867 whereupon he became the chair of organic chemistry at the Sorbonne. In 1867, the École Normale’s laboratory of physiological chemistry was created at Pasteur’s request, and he was the laboratory’s director from 1867 to 1888. Sadly In 1868, Pasteur suffered a severe brain stroke that paralysed the left side of his body, luckily though he recovered.

Pasteur conducted many fermentation experiments, And demonstrated that the skin of grapes was the natural source of yeasts, and that sterilized grapes and grape juice never fermented. Pasteur also produced the first vaccine for rabies by growing the virus in rabbits, and then weakening it by drying the affected nerve tissue.The rabies vaccine was initially created by Emile Roux, a French doctor and a colleague of Pasteur, who had produced a killed vaccine using this method.

Pasteur publicly claimed his success in developing the anthrax vaccine in 1881. However, fellow scientist and admirer Jean Joseph Henri Toussaint was the one who developed the first vaccine. Toussaint isolated the bacteria that caused chicken cholera (later named Pasteurella in honour of Pasteur) in 1879 and gave samples to Pasteur who used them for his own works. On July 12, 1880, Toussaint presented his successful result to the French Academy of Sciences, using an attenuated vaccine against anthrax in dogs and sheep. Pasteur on grounds of jealousy contested the discovery by publicly displaying his vaccination method at Pouilly-le-Fort on May 5, 1881. Pasteur gave a misleading account of the preparation of the anthrax vaccine used in the experiment at Pouilly-le-Fort. He used potassium dichromate to prepare the vaccine. The promotional experiment was a success and helped Pasteur sell his products, getting the benefits and glory

Pasteur was a French national hero at age 55, in 1878 Pasteur discreetly told his family never to reveal his laboratory notebooks to anyone. His family obeyed, and all his documents were held and inherited in secrecy. In 1882, Pasteur sent his assistant Louis Thuillier to southern France because of an epizootic of swine erysipelas. Thuillier identified the bacillus that caused the disease in March 1883. Pasteur and Thuillier increased the bacillus’s virulence after passing it through pigeons. Then they passed the bacillus through rabbits, weakening it and obtaining a vaccine.

After developing the rabies vaccine, Pasteur proposed an institute for the vaccine. So In 1887, fundraising for the Pasteur Institute began, with donations from many countries. The official statute was registered in 1887, stating that the institute’s purposes were “the treatment of rabies according to the method developed by M. Pasteur” and “the study of virulent and contagious diseases”. The institute was inaugurated on November 14, 1888. He brought together scientists with various specialties. The first five departments were directed by two graduates of the École Normale Supérieure: Émile Duclaux (general microbiology research) and Charles Chamberland (microbe research concerning hygiene), as well as a biologist, Élie Metchnikoff (morphological microbe research) and two physicians, Jacques-Joseph Grancher (rabies) and Émile Roux (technical microbe research). One year after the inauguration of the institute, Roux set up the first course of microbiology ever taught in the world, then entitled Cours de Microbie Technique (Course of microbe research techniques). Since 1891 the Pasteur Institute had been extended to different countries, and currently there are 32 institutes in 29 countries in various parts of the world.

Unfortunately Louis Pasteur had A stroke or uremia in 1894 which severely impaired his health and from which was unable to fully recover and he tragically died on September 28, 1895, near Paris. Following his death He was given a state funeral and was buried in the Cathedral of Notre Dame, but his remains were reinterred in the Pasteur Institute in Paris, in a vault covered in depictions of his accomplishments in Byzantine mosaicsDuring his life Louis Pasteur received many awards for his pioneering work. In 1853 he was given 1,500 francs by the Pharmaceutical Society for the synthesis of racemic acid. In 1856 the Royal Society of London presented him the Rumford Medal for his discovery of the nature of racemic acid and its relations to polarized light, and the Copley Medal in 1874 for his work on fermentation. He was elected a Foreign Member of the Royal Society (ForMemRS) in 1869. The French Academy of Sciences awarded Pasteur the 1859 Montyon Prize for experimental physiology in 1860, and the Jecker Prize in 1861 and the Alhumbert Prize in 1862 for his experimental refutation of spontaneous generation.

In 1862 he gained membership to the mineralogy section of the French Academy of Sciences, He was elected to permanent secretary of the physical science section of the academy in 1887 and held the position until 1889. In 1873 Pasteur was elected to the Académie Nationale de Médecine and was made the commander in the Brazilian Order of the Rose. In 1881 he was elected to a seat at the Académie française left vacant by Émile Littré. Pasteur received the Albert Medal from the Royal Society of Arts in 1882. In 1883 he became a member of the Royal Netherlands Academy of Arts and Sciences. On June 8, 1886, the Ottoman Sultan Abdul Hamid II awarded Pasteur with the Order of the Medjidie (I Class) and 10000 Ottoman liras. Pasteur also won the Leeuwenhoek Medal from the Royal Netherlands Academy of Arts and Sciences for his contributions to microbiology in 1895 and was made a Chevalier of the Legion of Honour in 1853, promoted to Officer in 1863, to Commander in 1868, to Grand Officer in 1878 and made a Grand Cross of the Legion of Honor in 1881.

The Great conjunction

Jupiter and Saturn will align in the night sky on December 21 2020 in an event astronomers call the “great conjunction,” or the “Christmas Star”. The Great conjunction marks the closest apparent encounter of Jupiter and Saturn in nearly 400 years.  A conjunction occurs when planets appear incredibly close to one another in the sky because they line up with Earth in their respective orbits. While Jupiter and Saturn align about once every 20 years

The first Great conjunction was observed in 1623, by Italian astronomer Galileo Galilei after he pointed his telescope to the night sky, and discovered that the solar system’s two giant planets, Jupiter and Saturn, appeared to be travelling together across the sky. Jupiter caught up to and passed Saturn, in an astronomical event known as a “Great Conjunction.” this year’s conjunction takes place nearly 800 years since skywatchers were able to witness the event at night. The planetary alignment has also been called a “Christmas star,” since it falls on the first day of winter in the Northern Hemisphere and only a few days before Christmas. 

The two planets will be closest to each other in the sky December 21 which is also winter solstice, and may be viewed as one point of light, appearing only a tenth of a degree apart. They will remain in close alignment for a few days and will be easily visible to the naked eye when looking toward the southwest just after sunset.

Carl Sagan

American astronomer, cosmologist, astrophysicist, astrobiologist, author, science popularizer, and science communicator in astronomy and other natural sciences, Carl Edward Sagan sadly died of Pneumonia on 20 December 1996 at the age of 62 After suffering from myelodysplasia . He was born November 9, 1934. Sagan First became interested in science and astronomy when parents took him to the 1939 New York World’s Fair when he was four years old. The exhibits became a turning point in his life. He later recalled the moving map of the America of Tomorrow exhibit which showed beautiful highways and cloverleaves and little General Motors cars all carrying people to skyscrapers, buildings with lovely spires and, flying buttresses. At other exhibits, he remembered how a flashlight that shone on a photoelectric cell created a crackling sound, and how the sound from a tuning fork became a wave on an oscilloscope. He also witnessed the future media technology that would replace radio: television.

Soon after entering elementary school he began to express a strong inquisitiveness about nature. Sagan recalled taking his first trips to the public library alone, at the age of five, when his mother got him a library card. He wanted to learn what stars were, since Nobody else could give him a clear answer. He and a close friend took trips to the American Museum of Natural History across the East River in Manhattan. While there, they went to the Hayden Planetarium and walked around the museum’s exhibits of space objects, such as meteorites, and displays of dinosaurs and animals in natural settings. His parents bought him chemistry sets and reading materials. His interest in space, however, was his primary focus, especially after reading science fiction stories by writers such as H. G. Wells and Edgar Rice Burroughs, which stirred his imagination about life on other planets such as Mars. In 1947 he discovered Astounding Science Fiction magazine, which introduced him to more hard science fiction speculations than those in Burroughs’s novels. That same year inaugurated the “flying saucer” mass hysteria with the young Carl suspecting the “discs” might be alien spaceships.

Sagan lived in Bensonhurst where he went to David A. Boody Junior High School. He had his bar mitzvah in Bensonhurst when he turned 13. In 1948, his family moved to the nearby town of Rahway, New Jersey for his father’s work, where Sagan then entered Rahway High School. He graduated in 1951. Sagan was made president of the school’s chemistry club, and set up his own laboratory at home, teaching himself about molecules by making cardboard cutouts to help him visualize how molecules were formed and also remained interested in astronomy.

Sagan attended the University of Chicago. Its Chancellor, Robert Hutchins, structured the school as an “ideal meritocracy,” with no age requirement. The school also employed a number of the nation’s leading scientists, including Enrico Fermi and Edward Teller, along with operating the famous Yerkes Observatory. Sagan worked in the laboratory of the geneticist H. J. Muller and wrote a thesis on the origins of life with physical chemist Harold Urey. Sagan joined the Ryerson Astronomical Society, received a B.A. degree in self-proclaimed “nothing” with general and special honors in 1954, and a B.S. degree in physics in 1955. He went on to earn a M.S. degree in physics in 1956, before earning a Ph.D. degree in 1960 with the dissertation “Physical Studies of Planets” submitted to the Department of Astronomy and Astrophysics. From 1960 to 1962 Sagan was a Miller Fellow at the University of California, Berkeley. he also published an article in 1961 in the journal Science on the atmosphere of Venus, while also working with NASA’s Mariner 2 team, and served as a “Planetary Sciences Consultant” to the RAND Corporation.

After the publication of Sagan’s Science article, in 1961 Harvard University astronomers Fred Whipple and Donald Menzel offered Sagan the opportunity to give a colloquium at Harvard, and they subsequently offered him a lecturer position at the institution. Sagan instead asked to be made an assistant professor. Sagan lectured, performed research, and advised graduate students at the institution from 1963 until 1968, as well as working at the Smithsonian Astrophysical Observatory, both located in Cambridge, Massachusetts. Cornell University astronomer Thomas Gold then asked Sagan to move to Ithaca, New York and join the faculty at Cornell. and remained a faculty member at Cornell for nearly 30 years until his death in 1996. Following two years as an associate professor, Sagan became a full professor at Cornell in 1970, and directed the Laboratory for Planetary Studies there. From 1972 to 1981, he was associate director of the Center for Radiophysics and Space Research (CRSR) at Cornell. In 1976, he became the David Duncan Professor of Astronomy and Space Sciences.

Sagan was associated with the U.S. space program from its inception. From the 1950s onward, he worked as an advisor to NASA, where one of his duties included briefing the Apollo astronauts before their flights to the Moon. Sagan contributed to many of the robotic spacecraft missions that explored the Solar System, arranging experiments on many of the expeditions. Sagan assembled the first physical message that was sent into space: a gold-anodized plaque, attached to the space probe Pioneer 10, launched in 1972. Pioneer 11, also carrying another copy of the plaque, was launched In 1973. He continued to refine his designs; the most elaborate message he helped to develop and assemble was the Voyager Golden Record that was sent out with the Voyager space probes in 1977. Sagan often challenged the decisions to fund the Space Shuttle and the International Space Station at the expense of further robotic missions.

He became known for his work as a science popularizer and communicator. His best known scientific contribution is research on extraterrestrial life, including experimental demonstration of the production of amino acids from basic chemicals by radiation. Sagan assembled the first physical messages sent into space: the Pioneer plaque and the Voyager Golden Record, universal messages that could potentially be understood by any extraterrestrial intelligence that might find them. Sagan argued the now accepted hypothesis that the high surface temperatures of Venus can be attributed to and calculated using the greenhouse effect.

Sagan published more than 600 scientific papers and articles and was author, co-author or editor of more than 20 books. He wrote many popular science books, such as The Dragons of Eden, Broca’s Brain and Pale Blue Dot, and narrated and co-wrote the award-winning 1980 television series Cosmos: A Personal Voyage. The most widely watched series in the history of American public television, Cosmos has been seen by at least 500 million people across 60 different countries. The book Cosmos was published to accompany the series. He also wrote the science fiction novel Contact, the basis for a 1997 film of the same name. His papers, containing 595,000 items, are archived at The Library of Congress.

Sagan advocated scientific skeptical inquiry and the scientific method, pioneered exobiology and promoted the Search for Extra-Terrestrial Intelligence (SETI). He spent most of his career as a professor of astronomy at Cornell University, where he directed the Laboratory for Planetary Studies. Sagan and his works received numerous awards and honors, including the NASA Distinguished Public Service Medal, the National Academy of Sciences Public Welfare Medal, the Pulitzer Prize for General Non-Fiction for his book The Dragons of Eden, and, regarding Cosmos: A Personal Voyage, two Emmy Awards, the Peabody Award and the Hugo Award. He married three times and had five children.

Ada Lovelace

The Analyst, Metaphysician, and Founder of Scientific Computing, Augusta Ada King, Countess of Lovelace was born on 10th December 1815. Born Augusta Ada Byron and now commonly known as Ada Lovelace, she was the daughter of Lord Byron and is remembered as a mathematician and writer chiefly known for her work on Charles Babbage’s early mechanical general-purpose computer, the Analytical Engine. Her notes on the engine include what is recognised as the first algorithm intended to be processed by a machine. Because of this, she is often considered the world’s first computer programmer and left a legacy as role model for young women entering technology careers.

Ada was the only legitimate child born during a brief marriage between the poet Lord Byron and Anne Isabella Byron). She had no relationship with her father, who separated from her mother just a month after Ada was born, and four months later he left England forever and died in Greece in 1823 leaving her mother to raise her single-handedly, Her life was an apotheosis of struggle between emotion and reason, subjectivism and objectivism, poetics and mathematics, ill health and bursts of energy. Lady Byron wished her daughter to be unlike her poetical father, and she saw to it that Ada received tutoring in mathematics and music, as disciplines to counter dangerous poetic tendencies. But Ada’s complex inheritance became apparent as early as 1828, when she produced the design for a flying machine. It was mathematics that gave her life its wings.

As a young adult, she took an interest in mathematics, and in particular that of Lucasian professor of mathematics at Cambridge, Charles Babbage whom she met met in 1833, when she was just 17, who was One of the gentlemanly scientists of the era and become Ada’s lifelong friend. Babbage, was known as the inventor of the Difference Engine, an elaborate calculating machine that operated by the method of finite differences , and they began a voluminous correspondence on the topics of mathematics, logic, and ultimately all subjects. In 1835, Ada married William King, ten years her senior, and when King inherited a noble title in 1838, they became the Earl and Countess of Lovelace. Ada had three children. The family and its fortunes were very much directed by Lady Byron, whose domineering was rarely opposed by King.Babbage had made plans in 1834 for a new kind of calculating machine (although the Difference Engine was not finished), an Analytical Engine.

His Parliamentary sponsors refused to support a second machine with the first unfinished, but Babbage found sympathy for his new project abroad. In 1842, an Italian mathematician, Louis Menebrea, published a memoir in French on the subject of the Analytical Engine. Babbage enlisted Ada as translator for the memoir, and during a nine-month period in 1842-43, she worked feverishly on the article and a set of Notes she appended to it. These notes contain what is considered the first computer program — that is, an algorithm encoded for processing by a machine. Ada’s notes are important in the early history of computers. She also foresaw the capability of computers to go beyond mere calculating or number-crunching while others, including Babbage himself, focused only on these capabilities

Ada called herself an Analyst (& Metaphysician), and the combination was put to use in the Notes. She understood the plans for the device as well as Babbage but was better at articulating its promise. She rightly saw it as what we would call a general-purpose computer. It was suited for “developing and tabulating any function whatever. . . the engine is the material expression of any indefinite function of any degree of generality and complexity.” Her Notes anticipate future developments, including computer-generated music. Sadly though Ada passed away on November 27, 1852, in Marylebone at the age of 37, from Cancer and was buried beside the father she never knew. Her contributions to science were resurrected only recently, but many new biographies* attest to the fascination of Babbage’s “Enchantress of Numbers.”

Sir Patrick Moore CBE FRS FRAS

Writer, Amateur Astronomer and Television personality Sir Patrick Moore CBE FRS FRAS, sadly passed away on 9th December 2012 aged 89. He was Born 4 March 1923, in Pinner, Middlesex, on March 4 1923, and was the son of Captain Charles Caldwell-Moore, MC. Later the family moved to Sussex, where Patrick was to live for the rest of his life. He was educated at home owing to ill health, and wrote his first scientific paper at the age of 13 — his chosen subject was the features in a lunar crater he had seen through a small telescope. At the end of 1941 he joined the RAF to train for aircrew duties during World War II; however his fiancée was killed by a bomb during the war. during 1943 left for Canada for training as a navigator. He was commissioned in June 1944 and completed his training at a bomber conversion unit at Lossiemouth in northern Scotland but, due to epilepsy, was declared medically unfit for further flying duties and He left the Service in 1947.

From 1952 he was a freelance writer until One day in 1957 the BBC broadcast a somewhat sensationalist programme about flying saucers. Producers wanted a counterview by a “thoroughly reactionary and sceptical astronomer who knew some science and could talk”, consequently The Sky at Night was born, and it went on to become the world’s longest-running television series with the same original presenter & attracted millions of viewers. Moore’s Idiosyncrasies such as his rapid diction and monocle made him a popular and instantly recognisable figure on British television, where he became celebrated for the thunderous fervour with which he would utter the words: “We just don’t know!” to emphasise that our comprehension of the universe is incomplete. The secret of the program’s success lay not only in his tremendous learnedness but also in his gusto and humour & he soon attained a prominent status as a writer, researcher, radio commentator and television presenter and did more than anyone, with the possible exception of Arthur C Clarke, to educate the British public about astronomy and space travel.He would also happily appear on chat shows, quiz shows and comedy shows, among them The Goodies; Morecambe and Wise; Blankety Blank, and Have I Got News For You. He even starred in digitised form on the children’s video game show GamesMaster.moore was also a connoisseur of music, and sometimes played a xylophone on television. He also wrote the score for an opera about Theseus and the Minotaur. He was a keen sportsman too – particularly on the cricket pitch, where he proved a demon spin bowler. He also played golf and once at his local course set a club record – of 231, including a 43 on the third hole. Chess was another passion (he often carried with him a pocket chess set) and even dabbled in politics.

In 1982 he wrote a humorous but inflammatory book called Bureaucrats: How to Annoy Them. It advised that imposing a thin layer of candle grease on those parts of a form marked “for official use only” would prevent the recipient from writing anything and probably drive him mad. “Useful when dealing with the Inland Revenue,” said Moore. He was also A keen pipe smoker & was elected Pipeman of the Year in 1983. In addition to his many popular science books, he wrote numerous works of fiction. Moore was an opponent of fox hunting, an outspoken critic of the European Union and served as chairman of the short-lived anti-immigration United Country Party. After his fiancee was killed during World War II, he never married or had children.

Moore was also a former president of the British Astronomical Association, co-founder and former president of the Society for Popular Astronomy (SPA), author of over 70 books most of them about astronomy, As an amateur astronomer, he became known as a specialist on observing the Moon and creating the Caldwell catalogue. In 2002 Moore was appointed honorary vice-president of the Society for the History of Astronomy. He also won a Bafta for his services to television. He also continued to publish books to the end of his life. Recent titles include Patrick Moore on the Moon (2000, new edition 2006); The Data Book of Astronomy (2001); Patrick Moore: the autobiography (2005); Asteroid (with Arthur C Clarke, 2005); Stars of Destiny (2005); Ancient Lights (2008); and Can You Play Cricket on Mars? (2009). This year alone he published Astronomy with a Budget Telescope: An Introduction to Practical Observing; The Sky at Night: Answers to Questions from Across the Universe; Miaow!: Cats really are nicer than people!; and The New Astronomy Guide: Star Gazing in the Digital Age.

During his distinguished career Sir Patrick Moore received many honours. In 1968 he was appointed OBE then CBE in 1988 and finally knighted in 2001 .In 1982 a minor planet was named after him by the International Astronomical Union. He also held the posts of president of the British Astronomical Association and director of the Armagh Planetarium in Northern Ireland. Yet the Royal Society refused to elect him as a Fellow — one of their number declared that he had committed the ultimate sin of “making science popular”. In 2001, however, he was elected to an honorary Fellowship.

Ada Lovelace

The Analyst, Metaphysician, and Founder of Scientific Computing, Augusta Ada King, Countess of Lovelace Sadly passed away on November 27, 1852, in Marylebone at the age of 37, from Cancer. Born Augusta Ada Byron on 10th December 1815. She was the daughter of Lord Byron and is remembered as a mathematician and writer chiefly known for her work on Charles Babbage’s early mechanical general-purpose computer, the Analytical Engine. Her notes on the engine include what is recognised as the first algorithm intended to be processed by a machine. Because of this, she is often considered the world’s first computer programmer and left a legacy as role model for young women entering technology careers. Ada was the only legitimate child born to the poet Lord Byron and Anne Isabella Byron). She had no relationship with her father, who separated from her mother just a month after Ada was born, and four months later he left England forever and died in Greece in 1823 leaving her mother to raise her single-handedly, Her life was an apotheosis of struggle between emotion and reason, subjectivism and objectivism, poetics and mathematics, ill health and bursts of energy.

Lady Byron wished her daughter to be unlike her poetic father, and she saw to it that Ada received tutoring in mathematics and music, as disciplines to counter dangerous poetic tendencies. This produced results when, In 1828, Ada produced a design for a flying machine. As a young adult, she remained interested in mathematics, and in particular that of Lucasian professor of mathematics at Cambridge, Charles Babbage whom she met met in 1833, when she was just 17, who was one of the gentlemanly scientists of the era and become Ada’s lifelong friend. Babbage, was known as the inventor of the Difference Engine, an elaborate calculating machine that operated by the method of finite differences , and they began a voluminous correspondence on the topics of mathematics, logic, and many other subjects.

In 1835, Ada married William King, ten years her senior, and when King inherited a noble title in 1838, they became the Earl and Countess of Lovelace. Ada had three children. The family and its fortunes were very much directed by Lady Byron, whose domineering was rarely opposed by King. Babbage had made plans in 1834 for a new kind of calculating machine (although the Difference Engine was not finished), an Analytical Engine. His Parliamentary sponsors refused to support a second machine with the first unfinished, but Babbage found sympathy for his new project abroad. In 1842, an Italian mathematician, Louis Menebrea, published a memoir in French on the subject of the Analytical Engine. Babbage enlisted Ada as translator for the memoir, and during a nine-month period in 1842-43, she worked feverishly on the article and a set of Notes she appended to it. These notes contain what is considered the first computer program — that is, an algorithm encoded for processing by a machine. Ada’s notes are important in the early history of computers. She also foresaw the capability of computers to go beyond mere calculating or number-crunching while others, including Babbage himself, focused only on these capabilities.

Ada called herself an Analyst & Metaphysician, and the combination was put to use in the Notes. She understood the plans for the device as well as Babbage but was better at explaining uses for the device. She rightly saw it as what we would call a general-purpose computer. It was suited for “developing and tabulating any function whatever. . . the engine is the material expression of any indefinite function of any degree of generality and complexity.” Her Notes also anticipated future developments, including computer-generated music. Her contributions to science and fascination for Babbage’s Difference Engine earned her the nickname “Enchantress of Numbers.”

Karl Benz

Generally regarded as the inventor of the gasoline-powered automobile, the German engineer & Automotive pioneer Karl Benz was born on November 25, 1844 in Mühlburg (Karlsruhe). Benz attended the local Grammar School in Karlsruhe. In 1853, at the age of nine he started at the scientifically oriented Lyceum. Next he studied at the Poly-Technical University. Benz had originally focused his studies on locksmithing, but went on to locomotive engineering. On September 30, 1860, at age fifteen, he passed the entrance exam for mechanical engineering at the University of Karlsruhe. During these years, while riding his bicycle, he developed a vehicle that would eventually become the horseless carriage.After his formal education, Benz had seven years of professional training in several companies, starting in Karlsruhe with two years of varied jobs in a mechanical engineering company. He then moved to Mannheim to work as a draftsman and designer in a scales factory. In 1868 he went to Pforzheim to work for a bridge building company Gebrüder Benckiser Eisenwerke und Maschinenfabrik. Finally, he went to Vienna to work at an iron construction company.

At the age of twenty-seven, Karl Benz joined August Ritter at the Iron Foundry and Mechanical Workshop in Mannheim, later renamed Factory for Machines for Sheet-metal Working. Karl Benz led in the development of new engines & in 1878 he began to work on new patents. First creating a reliable petrol two-stroke engine. Other German contemporaries, Gottlieb Daimler and Wilhelm Maybach were also working on similar engines, but Benz was the first to make the internal combustion engine feasible for use in an automobile. Karl Benz showed genius, through his successive inventions registered while designing what would become the production standard for his two-stroke engine. Benz soon patented the speed regulation system, the ignition, the spark plug, the carburettor, the clutch, the gear shift, and the water radiator.

in 1882 The company became Gasmotoren Fabrik Mannheim, but Benz left in 1883 and got a job at a bicycle repair shop in Mannheim owned by Max Rose and Friedrich Wilhelm Eßlinger. In 1883, the three founded a new company producing industrial machines: Benz & Company Rheinische Gasmotoren-Fabrik, (Benz & Cie) which began producing static gas engines as well. Benz continued his ideas for a horseless carriage. Using a similar technology to that of motorcycles he created an automobile, which had wire wheels with a four-stroke engine of his own design between the rear wheels and a very advanced coil ignition and evaporative cooling rather than a radiator. Power was transmitted by means of two roller chains to the rear axle. Karl Benz finished his creation in 1885 and named it the Benz Patent Motorwagen. This was the first automobile entirely designed to generate its own power, and not simply a motorized-stage coach or horse carriage.

The next year Benz created the Motorwagen Model 2, which had several modifications, and in 1887, the definitive Model 3 with wooden wheels was introduced, showing at the Paris Expo the same year. Benz began to sell the vehicle making it the first commercially available automobile in history, then In Early 1888 another gear was added to The Motorwagen allowing it to climb hills. To generate publicity and demonstrate the feasibility of using the Benz Motorwagen for travel, Benz’s wife Bertha took her first long distance automobile trip from Mannheim to Pforzheim , using one of the vehicles.Having to locate pharmacies on the way to fuel up, and repairing various technical and mechanical problems during the journey, Including adding leather to the brake blocks to make them more effective thus inventing brake lining. She arrived at her destination and sent Karl Benz a Telgram announcing the fact & Today the event is considered world’s first long-distance journey by automobile.

This event is celebrated every two years in Germany with an antique automobile rally called the Bertha Benz Memorial Route and is signposted from Mannheim via Heidelberg to Pforzheim (Black Forest) and back. Benz’s Model 3 made its debut at the 1889 World’s Fair in Paris. there was a great demand Benz’s vehicles and By 1899 Benz was the largest automobile company in the world. In 1893 Benz created a less expensive vehicle suitable for mass production – the Victoria. This was a two-passenger automobile with a 2.2 kW (3.0 hp) engine, which could reach the top speed of 18 km/h (11 mph) and had a pivotal front axle operated by a roller-chained tiller for steering. The Benz Velo also participated in the world’s first automobile race, the 1894 Paris to Rouen, where Émile Roger finished 14th, after covering the 127 km (79 mi) in 10 hours 01 minute at an average speed of 12.7 km/h (7.9 mph). In 1895, Benz designed the first truck in history, some of these were subsequently modified to become the first motor buses.

In 1896, Karl Benz created the first flat engine. It had horizontally opposed pistons, where the corresponding pistons reach top dead centre simultaneously, thus balancing each other with respect to momentum. Flat engines with four or fewer cylinders are most commonly called boxer engines or horizontally opposed engines. This design is still used by Porsche, Subaru, and some high performance engines used in racing cars (Like the Subaru Impreza WRC) and BMW motorcycles.

Competitions between Daimler Motoren Gesellschaft (DMG) in Stuttgart and Benz & Cie became intense. The main designer of DMG, Wilhelm Maybach, built the engine to the specifications of Emil Jellinek, who stipulated the new engine be named Daimler-Mercedes (after his daughter) and began racing the vehicles with great success. So Benz countered with the Parsifil, in 1903 with a vertical twin engine that achieved a top speed of 37 mph (60 km/h). In 1903 Karl Benz announced his retirement from design management but remained as director on the Board of Management through its merger with DMG in 1926 and, remained on the board of the new Daimler-Benz corporation until his death in 1929. Benz son Richard returned to the company in 1904 as the designer of passenger vehicles along with continuing as a director of Benz & Cie.

In 1906 Karl Benz, Bertha Benz, and their son, Eugen, then founded the private company, C. Benz Sons (German: Benz Söhne), producing automobiles and gas engines. The latter type was replaced by petrol engines because of lack of demand. The Benz Sons automobiles were of good quality and became popular in London as taxis.In 1909, the Blitzen Benz was built in Mannheim by Benz & Cie. The bird-beaked vehicle had a 21.5-liter (1312ci), 150 kW (200 hp) engine, and on November 9, 1909 in the hands of Victor Hémery of France, the land speed racer at Brooklands, set a record of 226.91 km/h (141.94 mph). on November 25, 1914, the seventy-year-old Karl Benz was awarded an honorary doctorate by his alma mater, the Karlsruhe University, thereby becoming—Dr. Ing. h. c. Karl Benz.

sports car racing became a major method to gain publicity for manufacturers and the Benz Velo participated in the first automobile race: Paris to Rouen. soon Unique race vehicles were being built. Including the Benz Tropfenwagen, which was introduced at the 1923 European Grand Prix at Monza and became the first mid-engine aerodynamically designed Racing car.In 1924 both Benz Cie and DMG started using standardized design, production, purchasing, sales, and advertising— marketing their automobile models jointly—although keeping their respective brands. Then in 1926, Benz & Cie. and DMG finally merged as the Daimler-Benz company, naming all of its automobiles, Mercedes Benz, after ten-year-old Mercédès Jellinek. A new logo was created, consisting of a three pointed star (representing Daimler’s motto: “engines for land, air, and water”) with the laurels from the Benz logo. Sadly On April 4, 1929, Karl Benz passed away at his home in Ladenburg at the age of eighty-four from a bronchial inflammation.The Benz home is historic and is now used as a scientific meeting facility for the Gottlieb Daimler and Karl Benz Foundation, which honors both Bertha and Karl Benz for their roles in the history of automobiles.