Edward Davy

English physician, scientist, and inventor Edward Davy was born 16 june 1806, he played a prominent role in the development of telegraphy, and invented an electric relay. Davy was born in Ottery St Mary, Devonshire, England and was educated at a school run by his maternal uncle in Tower Street, London. He was then apprenticed to Dr Wheeler, house surgeon at St Bartholomew’s Hospital. Davy won the prize for botany in 1825, was licensed by the Worshipful Society of Apothecaries in 1828 and the Royal College of Surgeons in 1829. Soon after graduating, Davy began trading as an operative chemist under the name of Davy & Co. In 1836 he published a small book Experimental Guide to Chemistry, at the end of which was a catalogue of goods supplied by his firm.

Davy published Outline of a New Plan of Telegraphic Communication in 1836 and carried out telegraphic experiments the following year. He demonstrated the operation of the telegraph over a mile of wire in Regent’s Park.In 1837 he demonstrated a working model of the telegraph in Exeter Hall. He was granted a patent for his telegraph in 1838. However, he was soon obliged to drop his investigations of telegraphy for personal reasons. His patent was purchased by the Electric Telegraph Company in 1847 for £600. Davey also invented an electric relay. He used a magnetic needle which dipped into a mercury contact when an electric current passed through the surrounding coil.

In recognition of his work he was elected in 1885 as an honorary member of the Society of Telegraph Engineers and was informed of this by telegraph shortly before his death. In 1838 Davy migrated to South Australia without his first wife and son. He became editor of the Adelaide Examiner from June to July 1842 and was elected president of the Port Adelaide Mechanics’ Institute at its inaugural meeting in 1851. Davy was also a director and manager of the Adelaide Smelting Company and became chief assayer of the Government Assay Office in Adelaide in February 1852. Davy was also appointed assay master in Melbourne in July 1853 until the office was abolished in October 1854. For a short while, he took up farming near Malmsbury, Victoria then moved into Malmsbury where he practised as a physician for the rest of his life. He was three times mayor of Malmbury. Davy sadly passed away 26 January 1885

Advertisements

Tim Berners Lee OM KBE FRS FREng FRSA FBCS

English-American computer scientist and engineer, Sir Timothy John Berners-Lee OM KBE FRS FREng FRSA FBCS was was born 8 June 1955 In London, England. His parents Mary Lee Woods and Conway Berners-Lee worked on the first commercially-built computer, the Ferranti Mark 1. He attended Sheen Mount Primary School, and then went on to attend south west London’s Emanuel School from 1969 to 1973, at the time a direct grant grammar school, which became an independent school in 1975. A keen trainspotter as a child, he learnt about electronics from tinkering with a model railway. He studied at The Queen’s College, Oxford from 1973 to 1976, where he received a first-class degree bachelor of arts degree in physics.

After graduation, Berners-Lee worked as an engineer at the telecommunications company Plessey in Poole, Dorset. In 1978, he joined D. G. Nash in Ferndown, Dorset, where he helped create type-setting software for printers. Berners-Lee worked as an independent contractor at CERN from June to December 1980. While in Geneva, he proposed a project based on the concept of hypertext, to facilitate sharing and updating information among researchers. To demonstrate it, he built a prototype system named ENQUIRE. After leaving CERN in late 1980, he went to work at John Poole’s Image Computer Systems, Ltd, in Bournemouth, Dorset. He ran the company’s technical side for three years. The project he worked on was a “real-time remote procedure call” which gave him experience in computer networking. In 1984, he returned to CERN as a fellow. In 1989, CERN was the largest Internet node in Europe, and Berners-Lee saw an opportunity to join hypertext with the Internet:

I just had to take the hypertext idea and connect it to the Transmission Control Protocol and domain name system ideas and—ta-da!—the World Wide Web. Creating the web was really an act of desperation, because the situation without it was very difficult when I was working at CERN later. Most of the technology involved in the web, like the hypertext, like the Internet, multifont text objects, had all been designed already. I just had to put them together. It was a step of generalising, going to a higher level of abstraction, thinking about all the documentation systems out there as being possibly part of a larger imaginary documentation system.” This NeXT Computer was used by Berners-Lee at CERN and became the world’s first web server. Berners-Lee wrote his proposal in March 1989 and, in 1990, redistributed it. It then was accepted by his manager, Mike Sendall.[29] He used similar ideas to those underlying the ENQUIRE system to create the World Wide Web, for which he designed and built the first Web browser. His software also functioned as an editor (called WorldWideWeb, running on the NeXTSTEP operating system), and the first Web server, CERN HTTPd (short for Hypertext Transfer Protocol daemon).

He is commonly credited with inventing the World Wide Web (abbreviated as WWW or W3, commonly known as the web). The World Wide Web is a series of interlinked hypertext documents accessed via the Internet. With a web browser, one can view web pages that may contain text, images, videos, and other multimedia and navigate between them via hyperlinks. The web was developed between March 1989 and December 1990. Using concepts from his earlier hypertext systems such as ENQUIRE, British engineer Tim Berners-Lee, acomputer scientist and at that time employee of the CERN, now Director of the World Wide Web Consortium (W3C), wrote a proposal in March 1989 for what would eventually become the World Wide Web. The 1989 proposal was meant for a more effective CERN communication system but Berners-Lee eventually realised the concept could be implemented throughout the world. At CERN, a European research organisation nearGeneva straddling the border between France and Switzerland, berners-Lee and Belgian computer scientist Robert Cailliau proposed in 1990 to use hypertext “to link and access information of various kinds as a web of nodes in which the user can browse at will”. Berners-Lee finished the first website in December 1990 and posted the project on the alt.hypertext newsgroup on 7 August 1991

In the May 1970 issue of Popular Science magazine, Arthur C. Clarke predicted that satellites would someday “bring the accumulated knowledge of the world to your fingertips” using a console that would combine the functionality of the photocopier, telephone, television and a small computer, allowing data tyransfer and video conferencing around the globe.In March 1989, Tim Berners-Lee wrote a proposal that referenced ENQUIRE, a database and software project he had built in 1980, and described a more elaborate information management system. With help from Robert Cailliau, he published a more formal proposal (on 12 November 1990) to build a “Hypertext project” called “WorldWideWeb” (one word, also “W3”) as a “web” of “hypertext documents” to be viewed by “browsers” using a client–server architecture. This proposal estimated that a read-only web would be developed within three months and that it would take six months to achieve “the creation of new links and new material by readers, [so that] authorship becomes universal” as well as “the automatic notification of a reader when new material of interest to him/her has become available.” While the read-only goal was met, accessible authorship of web content took longer to mature, with the wiki concept, blogs, Web 2.0 and RSS/Atom.

The proposal was modeled after the SGML reader Dynatext by Electronic Book Technology, a spin-off from the Institute for Research in Information and Scholarship at Brown University. The Dynatext system, licensed by CERN, was a key player in the extension of SGML ISO 8879:1986 to Hypermedia within HyTime, but it was considered too expensive and had an inappropriate licensing policy for use in the general high energy physics community, namely a fee for each document and each document alteration.The CERN datacenter in 2010 housing some WWW serversA NeXT Computer was used by Berners-Lee as the world’s first web server and also to write the first web browser, WorldWideWeb, in 1990. By Christmas 1990, Berners-Lee had built all the tools necessary for a working Web: the first web browser (which was a web editor as well); the first web server; and the first web pages, which described the project itself.The first web page may be lost, but Paul Jones of UNC-Chapel Hill in North Carolina revealed in May 2013 that he has a copy of a page sent to him by Berners-Lee which is the oldest known web page. Jones stored it on a floppy disk and on his NeXT computer.

On 6 August 1991, Berners-Lee posted a short summary of the World Wide Web project on the alt.hypertext newsgroup. This date also marked the debut of the Web as a publicly available service on the Internet, although new users only access it after August 23. For this reason this is considered the internaut’s day. Many newsmedia have reported that the first photo on the web was uploaded by Berners-Lee in 1992, an image of the CERN house band Les Horribles Cernettes taken by Silvano de Gennaro; Gennaro has disclaimed this story, writing that media were “totally distorting our words for the sake of cheap sensationalism.”[18]The first server outside Europe was set up at the Stanford Linear Accelerator Center (SLAC) in Palo Alto, California, to host the SPIRES-HEP database. Accounts differ substantially as to the date of this event. The World Wide Web Consortium says December 1992,[19]whereas SLAC itself claims 1991. This is supported by a W3C document titled A Little History of the World Wide Web.[22]The crucial underlying concept of hypertext originated with older projects from the 1960s, such as the Hypertext Editing System (HES) at Brown University, Ted Nelson’s Project Xanadu, and Douglas Engelbart’s oN-Line System (NLS). Both Nelson and Engelbart were in turn inspired by Vannevar Bush’s microfilm-based “memex”, which was described in the 1945 essay “As We May Think”.

Berners-Lee’s breakthrough was to marry hypertext to the Internet. In his book Weaving The Web, he explains that he had repeatedly suggested that a marriage between the two technologies was possible to members of both technical communities, but when no one took up his invitation, he finally assumed the project himself. In the process, he developed three essential technologies:a system of globally unique identifiers for resources on the Web and elsewhere, the universal document identifier (UDI), later known as uniform resource locator (URL) and uniform resource identifier (URI);the publishing language HyperText Markup Language (HTML);the Hypertext Transfer Protocol (HTTP). The World Wide Web had a number of differences from other hypertext systems available at the time. The web required only unidirectional links rather than bidirectional ones, making it possible for someone to link to another resource without action by the owner of that resource. It also significantly reduced the difficulty of implementing web servers and browsers (in comparison to earlier systems), but in turn presented the chronic problem of link rot. Unlike predecessors such as HyperCard, the World Wide Web was non-proprietary, making it possible to develop servers and clients independently and to add extensions without licensing restrictions. On 30 April 1993, CERN announced that the World Wide Web would be free to anyone, with no fees due. Coming two months after the announcement that the server implementation of the Gopher protocol was no longer free to use, this produced a rapid shift away from Gopher and towards the Web.

An early popular web browser was ViolaWWW for Unix and the X Windowing System. Scholars generally agree that a turning point for the World Wide Web began with the introduction of the Mosaic web browser in 1993, a graphical browser developed by a team at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (NCSA-UIUC), led by Marc Andreessen. Funding for Mosaic came from the U.S. High-Performance Computing and Communications Initiative and the High Performance Computing and Communication Act of 1991, one of several computing developments initiated by U.S. Senator Al Gore.[28] Prior to the release of Mosaic, graphics were not commonly mixed with text in web pages and the web’s popularity was less than older protocols in use over the Internet, such as Gopher and Wide Area Information Servers(WAIS). Mosaic’s graphical user interface allowed the Web to become, by far, the most popular Internet protocol.

The World Wide Web Consortium (W3C) was founded by Tim Berners-Lee after he left the European Organization for Nuclear Research (CERN) in October 1994. It was founded at theMassachusetts Institute of Technology Laboratory for Computer Science (MIT/LCS) with support from the Defense Advanced Research Projects Agency (DARPA), which had pioneered the Internet; a year later, a second site was founded at INRIA (a French national computer research lab) with support from the European Commission DG InfSo; and in 1996, a third continental site was created in Japan at Keio University. By the end of 1994, while the total number of websites was still minute compared to present standards, quite a number of notable websites were already active, many of which are the precursors or inspiration for today’s most popular services.Connected by the existing Internet, other websites were created around the world, adding international standards for domain namesand HTML. Since then, Berners-Lee has played an active role in guiding the development of web standards (such as the markup languages in which web pages are composed), and has advocated his vision of a Semantic Web. The World Wide Web enabled the spread of information over the Internet through an easy-to-use and flexible format. It thus played an important role in popularizing use of the Internet.[29] Although the two terms are sometimes conflated in popular use, World Wide Web is not synonymous with Internet.[30]The web is a collection of documents and both client and server software using Internet protocols such as TCP/IP and HTTP.Tim Berners-Lee was knighted in 2004 by Queen Elizabeth II for his contribution to the World Wide Web.

Alan Turing OBE FRS

British mathematician, logician, cryptanalyst, and computer scientist Alan Turing OBE, FRS was found dead 8 June 1954 after committing suicide. He was Born on June 23rd, 1912 in Maida Vale, and grew up in Hastings. He displayed great individuality from a young age. At 14 he went to Sherborne School in Dorset.Turing subsequently read mathematics at Cambridge,He was completely original thinkerwho shaped the modern world, and assisted in the development of the innovative Manchester computers. He was also highly influential in the development of computer science, providing a formalisation of the concepts of “algorithm” and “computation” with the Turing machine, which played a sinificant role in the creation of the modern computer. Turing is widely considered to be the father of computer science and artificial intelligece.He also became interested in mathematical biology and wrote a paper on the chemical basis of morphogenesis, and predicted oscillating chemical reactions such as the Belousov–Zhabotinsky reaction, which were first observed in the 1960s.

On 4 September 1939 the day after Britain declared war on Germany, Turing reported to Bletchley Park where he worked for the Government Code and Cypher School (GCCS)the forerunner of GCHQ, Britain’s codebreaking centre. For a time he was head of Hut 8, the section responsible for German naval cryptanalysis. Turing led a team whose ingenuity and intellect were turned to the task of breaking German ciphers. He devised a number of techniques for breaking German ciphers and One of Turing’s main contributions whilst there was to invent the Bombe, an electromechanical machine used to find the daily settings of the Enigma machine. as a result he played an absolutely vital part of the British war effort and It is without question that his efforts helped shorten the war significantly, saving the lives of millions of people.He was also a remarkable British hero who helped create the modern world. Now known as the father of computer science, his inventions contributed greatly to the groundwork for the modern computer.

After the war he worked at the National Physical Laboratory, where he created one of the first designs for a stored-program computer, the ACE. In 1948 Turing joined Max Newman’s Computing Laboratory at Manchester University, where he assisted in the development of the Manchester computers and invented a type of theoretical machine now called a Turing Machine, which formalized what it means to compute a number. Turing’s importance extends far beyond Turing Machines. His work deciphering secret codes drastically shortened World War II and pioneered early computer technology.He was also an early innovator in the field of artificial intelligence, and came up with a way to test if computers could think – now known as the Turing Test. Besides this abstract work, he was down to earth; he designed and built real machines, even making his own relays and wiring up circuits. This combination of pure math and computing machines was the foundation of computer science.

Despite his achievements, and valuable contributions to cryptanalysis he was treated appallingly by the British Government and did not receive the recognition and plaudits that he deserved while alive because of his life style choices. A burglary at his home led Turing to admit to police that he was a practicing homosexual, at a time when it was illegal in Britain. This led to his arrest and conviction in 1952 for ‘gross indecency’. He was subsequently forced to choose between imprisonment and chemical castration. He chose chemical castration (treatment with female hormones) as an alternative to prison. As a result of his conviction he lost security clearance and was not allowed to continue his work. Sadly this all proved too much for Turing and On 8 June 1954 just over two weeks before his 42nd birthday, Turing was found dead from cyanide poisoning. An inquest determined that his death was suicide and he had poisoned himself with cyanide.

Thankfully since Turning’s birth most people’s attitudes have changed and most are now far more tolerant of people’s preferences. Since 1966 The US-based Association of Computing Machinery has annually awarded The Turing Award  for technical contribution to the computing community. This is the computing world’s highest honour and is considered equivalent to the Nobel prize. On 10 September 2009, following an Internet campaign, British Prime Minister Gordon Brown also made an official public apology on behalf of the British government for “the appalling way he was treated”. There is also A fully functional rebuild of the Bombe which can be found today at Bletchley Park, along with the excellent Turing exhibition.

Robert Moog

Best known as the inventor of the Moog synthesizer, The pioneer of electronic music, Robert Moog (Pronounced “Mogue”) was born on 23rd May 1934. Bob Moog’s innovative electronic design is employed in numerous synthesizers including the Minimoog Model D, Minimoog Voyager, Little Phatty, Moog Taurus Bass Pedals, Moog Minitaur, and the Moogerfooger line of effects pedals.He was born in New York and attended the Bronx High School of Science in New York, graduating in 1952. Moog earned a bachelor’s degree in physics from Queens College, New York in 1957, another in electrical engineering from Columbia University, and a Ph.D. in engineering physics from Cornell University. Moog’s awards include honorary doctorates from Polytechnic Institute of New York University (New York City) and Lycoming College (Williamsport, Pennsylvania).Moog created the first voltage-controlled subtractive synthesizer to utilize a keyboard as a controller and demonstrated it at the AES convention in 1964. In 1966, Moog filed a patent application for his unique low-pass filter which issued in October 1969. He held several dozen patents.

 

Moog also employed his theremin company (R. A. Moog Co., which would later become Moog Music) to manufacture and market his synthesizers. Unlike the few other 1960s synthesizer manufacturers, Moog shipped a piano-style keyboard as the standard user interface to his synthesizers. Moog also established standards for analog synthesizer control interfacing, with a logarithmic one volt-per-octave pitch control and a separate pulse triggering signal. The first instrument – The Moog modular synthesizer became one of the first widely used electronic musical instruments. Early developmental work on the components of the synthesizer occurred at the Columbia-Princeton Electronic Music Center, now the Computer Music Center. While there, Moog developed the voltage controlled oscillators, ADSR envelope generators, and other synthesizer modules with composer Herbert Deutsch. In 1971 Moog Music began production of the Minimoog Model D which was among the first widely available, portable and relatively affordable synthesizers. One of Moog’s earliest musical customers was Wendy Carlos whom he credits with providing feedback that was valuable to the further development of Moog synthesizers.Moog also constructed his own theremin as early as 1948. Later he described a theremin in the hobbyist magazine Electronics World and offered a kit of parts for the construction of the Electronic World’s Theremin, which became very successful.

In the late 1980s Moog repaired the original theremin of Clara Rockmore, an accomplishment which he considered a high point of his professional career. He also produced, in collaboration with first wife Shirleigh Moog, Mrs. Rockmore’s album, The Art of the Theremin. Moog was a principal interview subject in the award-winning documentary film, Theremin: An Electronic Odyssey, the success of which led to a revival of interest in the theremin. Moog Music went back to its roots and once again began manufacturing theremins. Thousands have been sold to date and are used by both professional and amateur musicians around the globe. In 1996 he published another do-it-yourself theremin guide. Today, Moog Music is the leading manufacturer of performance-quality thereminsThrough his involvement in electronic music, Moog developed close professional relationships with artists such as Don Buchla, Keith Emerson, Rick Wakeman, John Cage, Gershon Kingsley, Clara Rockmore, Jean Jacques Perrey , and Pamelia Kurstin.

In a 2000 interview, Moog said “I’m an engineer. I see myself as a toolmaker and the musicians are my customers. They use my tools.”During his lifetime, Moog founded two companies for manufacturing electronic musical instruments -RA Moog Co who manufactured Theramin Kits but left after a disagreement and formed a company called Big Briar. He also worked as a consultant and vice president for new product research at Kurzweil Music Systems from 1984 to 1988, helping to develop the Kurzweil K2000. He spent the early 1990s as a research professor of music at the University of North Carolina at Asheville. During his lifetime Moog received a Grammy Trustees Award for lifetime achievement in 1970, and In 2002, Moog was honored with a Special Merit/Technical Grammy Award, and an honorary doctorate degree from Berklee College of Music. Moog was also the inspiration behind the 2004 film Moog.

Sadly he was diagnosed with a glioblastoma multiforme brain tumor on April 28, 2005 and passed away nearly four months later, at the age of 71 in Asheville, North Carolina on August 21, 2005. The Bob Moog Foundation was created as a memorial, with the aim of continuing his life’s work of developing electronic music. He is survived by three daughters (Laura Moog Lanier, Michelle Moog-Koussa, Renee Moog) one son (Matthew Moog) one stepdaughter, Miranda Richmond, and five grandchildren.

Frank Hornby (Hornby, Meccano, Airfix)

Visionary toy manufacturer English inventor, businessman and politician Frank Hornby was born 15 May 1863. although he had no formal engineering training, he was responsible for the invention and production of three of the most popular lines of toys based on engineering principles in the twentieth century: Meccano, Hornby Model Railways and Dinky Toys. He also founded the British toy company Meccano Ltd in 1908. At the age of sixteen, Hornby left school and started working as a cashier in his father’s business. On 15 January 1887 he married a schoolteacher Clara Walker Godefroy, the daughter of acustoms officer and they had two sons, Roland and Douglas, and a daughter, Patricia. When his father died in 1899, his father’s business was closed and Hornby became abook keeper in Liverpool. After experimenting with new ideas in his home workshop, Hornby began making toys for his sons in 1899 with pieces he cut from sheet metal. He built models of bridges, trucks and cranes, although the pieces they were made from were not interchangeable. The breakthrough came when Hornby realised that if he could make separate, inter changeable parts that could be bolted together, any model could be built from the same components. The key inventive step was the realisation that regular perforations in the structural pieces could be used, not only to join them together with nuts and bolts, but be used as a bearing for – axles and shafts. This made the construction of complex mechanisms relatively simple. He started making metal strips by hand from copper sheets. The strips were half an inch wide with holes for bolts spaced at half inch intervals these became known as Meccano.

Hornby patented his invention in January 1901 as “Improvements in Toy or Educational Devices for Children and Young People”. Hornby began looking for companies to manufacture his product, but it was poorly finished. Fortunately, his employer saw potential in what Hornby was doing and offered him some vacant premises next to the office where he worked to pursue his ideas. With this move, Elliot and Hornby became partners.Hornby now called his construction oy “Mechanics Made Easy” and after receiving a positive endorsement from professor Henry Selby Hele-Shaw, then Head of the Engineering Department at Liverpool University, Hornby secured contracts with outside manufacturers to supply the parts for his construction sets. With the financial assistance of his partner, “Mechanics Made Easy” sets went on sale in 1902. Each set had only 16 different parts with a leaflet detailing the construction of 12 models. In 1903, 1,500 sets were sold, and new parts were continually being introduced until in 1904, six sets, packed in tin boxes with instruction manuals in French and English, became available. In 1905 two new sets were introduced and By 1907 Hornby’s part suppliers could not meet the demand. So Hornby quit his job with Elliot and secured a three year lease on a workshop in Duke Street, Liverpool, and they were manufacturing their own parts by June 1907.

In September 1907, Hornby registered his famous “Meccano” trade mark and used this name on all new sets. This led to the formation of Meccano Ltd on 30 May 1908 and in 1910 the famous “MECCANO” logo was commissioned. Meccano was exported to many countries and in 1912, Hornby and his son, Roland, formed Meccano (France) Ltd in Paris to manufacture Meccano. An office was also opened in Berlin, Germany and Märklin began to manufacture Meccano under licence. Hornby also started importing clockwork motors from Märklin.In order to keep pace with demand, a new factory was built in Binns Road, Liverpool. By September 1914 the Binns Road Factory was in full production and became the company headquarters for over 60 yeaers in addition to Meccano, Hornby developed and manufactured a number of other model kits and toys, including:1909 – “Hornby System of Mechanical Demonstration”, an educational set. In 1916, Hornby launched a monthly publication, Meccano Magazine, which remained in circulation for over sixty years, and in 1930 he formed the Meccano Guild, an amalgamation of Meccano clubs from all over the world.

The first clockwork train was produced in 1920 and Clockwork lithographed tinplate O scale trains we’re produced in. 1927 –. Even though the export models were often painted in ‘foreign’ liveries, Hornby trains looked very British. Hornby attempted to break into the American market by setting up a factory in 1927 in Elizabeth, New Jersey, to make American-style trains. These were colourful and attractive, but low market and only clockwork. They probably would have failed in the marketplace because several established U.S. firms could undercut them and Hornby offered no better-class goods or electric models, but the Wall Street Crash precipitated matters. In late 1929, Meccano Ltd. sold its New Jersey factory to the A. C. Gilbert Company and Hornby trains had vanished from the U.S. market by 1930. The leftover inventory was sold in Canada and in the UK and some of the tooling was reused for products in other markets.

In 1934 Hornby introduced Dinky Toys, die-cast miniature model cars and trucks and  Hornby Dublo 00 gauge model railway system in 1938 .Hornby was at first a tradename for the railway productions of Meccano Ltd and based inLiverpool, which released its first train, a clockwork 0 gauge (1:48) model, in 1920. An electric train soon followed but was under-designed and the few that were made were sold out in France. In 1925, a much more successful electric model was introduced, operating on the high voltage of 110 volts AC power. Safety concerns saw low voltage 4V and then 6V motors introduced, followed by a reliable 20V AC system, which was developed in the early 1930s. However, clockwork remained the mainstay of the Hornby 0 gauge trains until 1937 and became the only power available in Liverpool-made 0 gauge trains from 1949. Competitors in the UK were Leeds Model Company and Bassett-LowkeA factory was established in France, which developed its own range of French outline trains, but Liverpool dominated export activity elsewhere, with large numbers of Hornby trains exported to Australia, New Zealand, Argentina and Scandinavia.

In 1931 he entered politics when he was elected as a Conservative MP for the Everton constituency. He left the running of the company to his co-Directors and staff. But he did not stay in politics long – he resigned his parliamentary seat before the 1935 General Election.Hornby died of a chronic heart condition complicated by diabetes in Maghull, near Liverpool, on 21 September 1936. He is buried in the grounds of St Andrews Church, Maghull. His elder son Roland took over as Chairman of Meccano Ltd.

 

 

In 1964, Lines Bros Ltd., the parent company of rival Tri-ang Railways, purchased Meccano Ltd., and merged Hornby and Tri-ang into Tri-ang Hornby.[1] The former Hornby line was discontinued in favour of Tri-ang’s less costly plastic designs. The Hornby Dublo tooling was sold to G & R Wrenn, which continued to make most of the loco range and ‘superdetail’ rolling stock. Remaining stocks of 0 gauge were either scrapped or sold to the local retailer Hattons and the Tri-ang group was disbanded in 1971 when Meccano Ltd’s owner Lines Bros. filed for bankruptcy Meccano took over The former Tri-ang, becomingHornby Railways in 1972.

In the 1970s Hornby released a steam-powered 3½” gauge model of the Rocket and a BR standard class 9f. By 1976 Hornby was facing challenges from Palitoy and Airfix, both of which were producing high quality detailed models. Detail on the models was upgraded to make the product line more attractive to adult hobbyists. A 16 channel command control system named Zero 1 was introduced in late 1979 and Advertisements claimed that 16 locomotives could be operated independently at the same time although it was expensive, with clean track and well serviced locos the system worked well The system is still used today by many modelers and Second hand items are still in great demand on eBay.  In 1964, Hornby and Meccano were bought by their competitor Tri-Ang, and sold on when Tri-ang went into receivership. In the 1980s Hornby Railways became independent

in 2006 a Cotswold Rail Class 43 HST power car was introduced carrying a livery advertising Hornby which has since been repainted.In 1980 Hornby became Hornby Hobbies. By the early 1990s Hornby again faced competition from newcomers like Dapol and established foreign manufacturers, including Lima and Bachmann Industries. Train sets based on Thomas the Tank Engine and Friends and Harry Potter (the “Hogwarts Express”) Were introduced and becam popular.In September 2003 Hornby released its first steam-powered 00 gauge locomotive, a model of the record-breaking Mallard. Several other “Live Steam” locomotives have also now been produced. Since then Hornby has bought Lima, an Italian model railway equipment manufacturer that had previously acquired Jouef, a French manufacturer. Some of the ex-Lima models appear in the main Hornby products list. This range is known as Hornby International. Hornby Railways produce a large range of highly detailed British steam and diesel locomotives, such as the BR 9F, LNER Class A4, SR Merchant Navy, class 60, Class 50, Class 31 and Class 08. In November 2006, Hornby Hobbies acquired Airfix and Humbrol paints July 2010 also saw the opening of the Hornby Shop And Visitor Centre. Hornby and Meccano continue to be successful. Hornby’s legacy lives on today with thousands of enthusiasts all over the world still building Meccano models, running Hornby Train sets and collecting Dinky Toys. In his homeplace of Maghull there is a local pub named after him ‘The Frank Hornby’.

Leonardo Da Vinci

Mona Lisa by Leonardo da Vinci

Italian Renaissance polymath: painter, sculptor, architect, musician, scientist, mathematician, engineer, inventor, anatomist, geologist, cartographer, botanist, and writer Leonardo da Vinci sadly passed away on this date 2nd May in 1519.His genius, perhaps more than that of any other figure, epitomized the Renaissance humanist ideal. Leonardo has often been described as the archetype of the Renaissance Man, a man of “unquenchable curiosity” and “feverishly inventive imagination”. He is widely considered to be one of the greatest painters of all time and perhaps the mostdiversely talented person ever to have lived. According to art historian Helen Gardner, the scope and depth of his interests were without precedent and “his mind and personality seem to us superhuman, the man himself mysterious and remote”. Marco Rosci points out, however, that while there is much speculation about Leonardo, his vision of the world is essentially logical rather than mysterious, and that the empirical methods he employed were unusual for his time.

Vitruvian Man

Leonardo Da Vinci was Born out of wedlock to a notary, Piero da Vinci, and a peasant woman, Caterina, at Vinci in the region of Florence, Leonardo was educated in the studio of the renowned Florentine painter, Verrocchio. Much of his earlier working life was spent in the service of Ludovico il Moro in Milan. He later worked in Rome, Bologna and Venice, and he spent his last years in France at the home awarded him by Francis I. Leonardo was and is renowned primarily as a painter. Among his works, the Mona Lisa is the most famous and most parodied portrait and The Last Supper the most reproduced religious painting of all time, with their fame approached only by Michelangelo’s The Creation of Adam. Leonardo’s drawing of the Vitruvian Man is also regarded as a cultural icon, being reproduced on items as varied as the euro, textbooks, and T-shirts.Perhaps fifteen of his paintings survive, the small number because of his constant, and frequently disastrous, experimentation with new techniques, and his chronic procrastination.

Nevertheless, these few works, together with his notebooks, which contain drawings, scientific diagrams, and his thoughts on the nature of painting, compose a contribution to later generations of artists only rivalled by that of his contemporary, Michelangelo. Leonardo was also revered for his technological ingenuity. He conceptualised a helicopter, a tank, concentrated solar power, a calculator, the double hull, and he outlined a rudimentary theory of plate tectonics. Relatively few of his designs were constructed or were even feasible during his lifetime, but some of his smaller inventions, such as an automated bobbin winder and a machine for testing the tensile strength of wire, entered the world of manufacturing unheralded. He also made many important discoveries in anatomy, civil engineering, optics, and hydrodynamics and his legacy can still be felt today.

Samuel Morse

Samuel Morse The American contributor to the invention of a single-wire telegraph system and co-inventor of Morse code, was born 27th April in 1791 in Charlestown Massachusetts. He attended the Phillips Academy in Andover, Massachusetts, after which he went on to Yale College where he studied religious philosophy, mathematics and science of horses. While at Yale, he also attended lectures on electricity from Benjamin Silliman and Jeremiah Day, and In 1810, he graduated from Yale with Phi Beta Kappa honours.

Samuel Morse was also an accomplished painter and whilst at Yale He supported himself financially by painting. He expressed some of his beliefs in his painting “Landing of the Pilgrims”, through the depiction of simple clothing as well as the people’s austere facial features. His image captured the psychology of the Federalists; Calvinists from England brought to North America ideas of religion and government, thus linking the two countries. This work also attracted the attention of the notable artist Washington Allston. Later Morse accompanied Allstone on a three-year painting study in England, where he worked to perfect his painting techniques under Allston’s watchful eye. By the end of 1811, he gained admittance to the Royal Academy. He liked the Neo-classical art of the Renaissance particularly the works of Michelangelo and Raphael. After observing and practicing life drawing and absorbing its anatomical demands, the young artist produced his masterpiece, the Dying Hercules. Morse eventually left England on August 21, 1815, to return to the United States and begin his full-time career as a painter.

Between 1815–1825 Morse painted America’s culture and life, including the Federalist former President John Adams, hoping to become part of grander projects as the The Federalists and Anti-Federalists clashed over Dartmouth College. Morse painted portraits of Francis Brown — the college’s president — and Judge Woodward, who was involved in bringing the Dartmouth case before the U.S. Supreme Court. Morse moved to New Haven and was commissioned to paint the Hall of Congress and a portrait of the Marquis de Lafayette, who was a leading French supporter of the American Revolution. From 1830 to 1832, Morse traveled and studied in Europe to improve his painting skills, visiting Italy, Switzerland and France, Some of Morse’s paintings and sculptures are on display at his Locust Grove estate in Poughkeepsie, New York. During his time in Paris, he developed a friendship with the writer James Fennimore Cooper, and On a subsequent visit he also met Louis Daguerre and became interested in the latter’s daguerreotype — the first practical means of photography. In 1825, the city of New York Morse was commissioned to paint a portrait of Gilbert du Motier, marquis de Lafayette, in Washington. Whilst Morse was painting, he received a letter from his father that read one line, “Your dear wife is convalescent”. Morse immediately left Washington for his home at New Haven, leaving the portrait of Lafayette unfinished. Sadly By the time he arrived, his wife had already been buried.

Heartbroken in the knowledge that for days he was unaware of his wife’s failing health and her lonely death, this encouraged Morse to pursue a means of rapid long distance communication. On the sea voyage home in 1832, Morse encountered Charles Thomas Jackson of Boston, a man who was well schooled in electromagnetism. Witnessing various experiments with Jackson’s electromagnet, Morse developed the concept of a single-wire telegraph. However Morse encountered the problem of getting a telegraphic signal to carry over more than a few hundred yards of wire. His breakthrough came from the insights of Professor Leonard Gale, With Gale’s help, Morse introduced extra circuits or relays at frequent intervals and was soon able to send a message a distance of ten miles (16 km) of wire. Morse and Gale were soon joined by a young enthusiastic man, Alfred Vail, who had excellent skills, insights and money. At the Speedwell Ironworks in Morristown, New Jersey, Morse and Vail made the first public demonstration of the electric telegraph on January 11, 1838. and Today The original Morse telegraph, submitted with his patent application, is part of the collections of the National Museum of American History at the Smithsonian Institution

Morse sadly passed away on 2 April 1872 aged 80, and is buried in the Green-Wood Cemetery in Brooklyn, New York. However his legacy lives on and His valuable contributions to science and technology has enabled people to communicate long-distance and saved many lives. Even today Morse code is still the primary language of telegraphy and is still the standard for rhythmic transmission of data.