Talyllyn Railway🚂

Trains began running on the 7.25 miles (11.67 k Talyllyn narrow gauge Talyllyn Railway (Welsh: Rheilffordd Talyllyn) in Wales for the first time since preservation on 14 May 1951, from Tywyn on the Mid-Wales coast to Nant Gwernol near the village of Abergonolwyn.

The line was originally opened in 1865 to carry slate from the quarries at Bryn Eglwys to Tywyn, and was the first narrow gauge railway in Britain authorised by Act of Parliament to carry passengers using steam haulage.Slate quarrying began in the hills above Tywyn in the 1830s, but although many small quarries and test levels were established, only one major quarry was developed in the region, at Bryn Eglwys, 7 miles (11 km) north east of the town. Underground working began in the early 1840s, and by 1847 the quarry was being worked by local landowner John Pughe. The finished slates were sent by packhorse to the wharf at Pennal, transferred to boats for a river trip to Aberdyfi (Aberdovey), and then finally loaded into seagoing vessels, a complex and expensive transportation arrangement which limited the quarry’s output. In 1861 the outbreak of the American Civil War cut off supplies of cotton to the mills of the north west of England and as a result a number of prosperous mill owners looked for new business opportunities to diversify their interests. One such owner was William McConnel of Lancashire who, in 1859, had purchased a house near Dolgellau, north of Tywyn. In January 1864, McConnel formed the Aberdovey Slate Company, which leased the land including Bryn Eglwys from the landowner, Lewis Morris of Machynlleth.

McConnel set about improving Bryn Eglwys to increase its output. He focused on providing rail transport for the isolated quarry, and in April 1864 he reached agreement with local landowners to purchase the land necessary to build a railway towards Tywyn and the port of Aberdyfi. Construction was well underway by July 1864. The standard gauge Aberystwyth and Welsh Coast Railway was expanding rapidly from its base at Machynlleth, however, and in 1863 had reached Tywyn, so McConnel decided to build his line from the quarry to Tywyn, as the nearest point where slate could be transferred to the standard gauge railway. This was despite the line’s initial isolation from the rest of the system because of difficulties in bridging the estuary of the River Dover( Afon Dyfi) to the south. An Act of Parliament allowing the company to operate passenger trains as a public railway was given Royal Assent on 5 July 1865, and the company appointed James Swinton Spooner as engineer for the construction. By September 1866 construction of the line climbing steadily from Tywyn to the quarry was progressing nicely

However it was discovered that the loading gauge of the line was too small. The internal width of the overbridges was only 9 ft 1 in (277 cm), but the railway’s passenger carriages were 5 ft 3.5 in (161.3 cm) wide, leaving less than 2 ft (61 cm) clearance on either side, less than the minimum required clearance of 2 ft 6 in (76 cm). To alleviate this problem, McConnel made an unusual alteration, and proposed that the doors on one side of each carriage be permanently barred and the track slewed off-centre beneath the bridges to allow adequate clearance at least on the side with doors, which would allow passengers to get out of the carriages if the train stopped underneath a bridge. Consequently all carriages on the Talyllyn have doors on one side only.

Improvements were also made to the railway’s first two steam locomotives, as locomotive No. 1 suffered from excessive “vertical motion” and No. 2 was said to suffer from “horizontal oscillation”. No. 1 was returned to its manufacturer where a set of trailing wheels was added to reduce the rear overhang, and the springs on No. 2 were adjusted and crank pins shortened to reduce oscillation. The first public passenger timetable was issued in December 1866, and the first purpose-built, steam-worked, narrow gauge public railway in Britain opened for service with two locomotives, one carriage and several goods vehicles in use. It was operated under a “one engine in steam” policy to ensure that two trains could not collide Initially the working locomotive was housed in a wooden shed at Ty Dwr on the mineral line above Abergynolwyn station, while the main engineering works at Pendre were constructed. The Pendre works opened on 17 February 1867 and from then on trains began working from Pendre instead of Abergynolwyn. Stations were provided at Pendre and Abergynolwyn. In 1867, the halt at Rhydyronen opened, followed by Brynglas and Dolgoch in 1873. Some time shortly after the opening of the railway a branch to Abergynolwyn village was provided. A steep incline dropped from the mineral line east of Abergynolwyn station to the village below, where a series of tram lines radiated. Unlike the horse-drawn Corris Railway The Talyllyn Railway used steam locomotives from the start, . The original two locomotives, although of entirely different design, were both purchased from Fletcher, Jennings & Co. of Whitehaven in Cumbria and both are still in service, 150 years on.

The Talyllyn’s unusual gauge is thought to have been adopted to match that of the Corris Railway, and the line’s two original steam locomotives were among the earliest locomotives built for such a narrow gauge. No. 1 Talyllyn is an 0-4-2ST (saddle tank) and No. 2 Dolgoch is an 0-4-0WT (well tank). The line carried slate from the quarry to the wharf at Tywyn and general goods along its length. Public passenger trains initially ran between Abergynolwyn, Dolgoch and Pendre stations only; quarrymen were carried from Abergynolwyn to the foot of the Alltwyllt incline in Nant Gwernol gorge. The line served the quarry industry and the local district. By 1880, Bryn Eglwys employed 300 workers and was producing 8,000 long tons (8,100 t) of finished slate per year, all shipped via the railway. Passenger traffic rose from 11,500 passengers carried in 1867 to over 23,000 (roughly equivalent to 40,000 passenger journeys) in 1877. From the 1880s onwards the “Grand Tour” was a popular option with tourists. This used charabancs to link the Talyllyn and Corris railways via Tal-y-llyn Lake and Cadair Idris, returning on Cambrian Railways trains.
The last two decades of the 19th century saw a decline in the demand for slate and many smaller quarries fell on hard times, including Bryn Eglwys, where by 1890 production had halved to 4,000 long tons (4,100 t) a year. In 1896, production at the Penrhyn Quarry in north Wales, one of the largest producers of slate, was stopped due to labour disputes, resulting in a temporary increase in demand at other quarries. However In 1910 McConnell’s lease expired and work began on dismantling Bryn Eglwys quarry’s equipment. The Bryn Eglwys quarry had been the primary employer in the Abergynolwyn district, so its closure caused significant distress. In 1910, local landowner Henry Haydn Jones was elected the Liberal MP for Merioneth. He understood the importance of Bryn Eglwys, and purchased the quarry company for just over £5000. The quarry re-opened in January 1911. The first workings reopened were on the “Broad Vein”, which yielded relatively hard slate that was less popular and therefore difficult to sell. The lack of an available market for this output forced the quarry to switch to extracting softer slate from the “Narrow Vein.

Following the First World War A brief construction boom saw production return to around 4,000 long tons (4,100 t) per year and The 1920s also saw an upsurge in holiday traffic, as Britain recovered from the war and tourism gained in popularity. The Talyllyn saw summer passenger numbers grow significantly and regularly had to supplement its formal passenger stock with slate wagons fitted with planks as seats. An unusual tourist service offered by the railway was to hire a slate wagon, which would be left at Abergynolwyn. At the end of the day the tourists would return to Tywyn in the wagon, powered by gravity. However This service was discontinued in the early 1930s. The lease on Bryn Eglwys expired in 1942, but was extended on an annual basis. Sadly on 26 December 1946, several weakened support columns in the quarry gave way, resulting in a significant collapse; the quarry was deemed unsafe and closed immediately. Haydn Jones had promised to continue operating the railway as long as he was alive and so, despite the closure of the quarry, the railway continued to run trains on a shoestring budget. In 1948 the British railway system was nationalized however the Talyllyn was one of the few operating railways not included. Between 1947 and 1949 the railway ran a passenger service two days a week. In 1949 Haydn Jones, who owned the Aberllefenni Slate Quarry purchased 10 tons of rail from the recently lifted Corris Railway.

Sadly Haydn Jones died on 2 July 1950 and closure of the railway seemed inevitable, but the line continued to operate until October and in 1951 it became the first railway in the world to be preserved as a heritage railway by volunteers after the author and biographer Tom Rolt, visited the line in 1949, along with the locomotive engineer David Curwen and wrote a letter to the Birmingham Post newspaper suggesting that a rescue of the Talyllyn be undertaken. He received sufficient positive response for a meeting of interested enthusiasts to be held on 11 October 1950 at the Imperial Hotel in Birmingham. Around 70 people, including Patrick Whitehouse, attended the meeting. The committee – with Rolt as chairman and Whitehouse as Secretary – met for the first time on 23 October and entered into negotiation with Haydn Jones’ executor concerning the legally complex transfer of ownership from Haydn Jones’ estate to a new company called Talyllyn Holdings Ltd which took place on 8 February 1951, henceforth the Talyllyn Railway Preservation Society effectively took control of the Railway and immediately began to publicise its efforts, hoping to raise funds and find further volunteers to help reopen the railway, and by May nearly 650 members had joined the society. The railway re-opened under the control of the Society for the first time on the Whit Monday bank holiday, 14 May 1951, with trains running between Wharf and Rhydyronen stations. Regular trains began to run on 4 June throughout the summer, with David Curwen acting as the first Chief Mechanical Engineer.

During the early years of preservation, the line struggled to operate using the original rolling stock. When the line was taken over in 1950 Dolgoch was the only operating locomotive and it was apparent that it was in need of a major overhaul. To enable operations to continue two further steam locomotives, Nos. 3 and 4, were purchased from the recently closed Corris Railway in 1951 and named Sir Haydn and Edward Thomas respectively. Because both railways were built to the unusual gauge of 2 ft 3 in (686 mm) it was relatively easy to adapt the Corris locomotives to work on the Talyllyn. No. 3 became the first new locomotive to travel on the railway for over 80 years in 1951, but it frequently derailed, and on inspection it turned out that the Talyllyn track was laid approximately half an inch (13 mm) wider than the official gauge, a deliberate policy by the old company to accommodate the long wheelbase of Talyllyn. 

Both Talyllyn and Dolgoch had unusually wide wheel treads that allowed them to stay on the wide-of-gauge track however This problem was eventually cured. No. 4 was unserviceable when it arrived, but John Alcock, the chairman of the Hunslet Engine Company, was a member of the Preservation Society and had No. 4 overhauled free of charge at his works. No. 4 then began service on the railway in 1952 and worked the majority of the trains that season. On 22 May 1957 the BBC produced a live outside broadcast from the railway, during which Wynford Vaughan Thomas and Huw Weldon undertook a trip from Dolgoch to Abergynolwyn. The publicity from this broadcast drew substantial numbers of visitors to the railway that summer, with more than 57,500 passengers carried, and this increase in revenue in turn enabled the railway to continue to improve its infrastructure and provide tourists with a better experience. In 1958 No. 1 Talyllyn also returned to steam after an extensive overhaul.

The Narrow Gauge Railway Museum at Tywyn Wharf station was also built. The first exhibit for what was to become the museum was a locomotive donated in 1952 by Guinness from their recently closed St. James’s Gate Brewery railway. In 1954 the Preservation Society agreed to start work on a formal museum and exhibits from around the United Kingdom were acquired to form the nucleus of the collection. In 1955 work started on converting the old gunpowder store at Wharf station into a temporary museum building, and in 1956 the first exhibit arrived at Tywyn. The preservation society had long held ambitions to extend the railway along the former mineral extension from Abergynolwyn to the foot of the Alltwyllt incline but construction did not start until 1968 when the winding house for the Abergynolwyn village incline was demolished. In 1976, an extension was opened along the former mineral line from Abergynolwyn to the new station at Nant Gwernol by Wynford Vaughan Thomas who drove in the ceremonial “golden spike” to complete the extension. creation of footpaths also began connecting to the new station and A new footbridge was built crossing the Nant Gwernol gorge and connecting the station with the existing path on the east side of the river. The bridge and paths were opened on 3 May 1980 by Lord Parry, the chairman of the Wales Tourist Board

The Preservation Society celebrated its 50th anniversary in 2001, and as part of the year of celebrations a major new project was launched to once more extend and improve facilities at Tywyn Wharf station. semi-permanent buildings existed housing the Narrow Gauge Railway Museum, but the new plans for the station included the construction of a new two-storey building to house the museum and the extension of the existing station building to house a new cafe and booking office these were officially opened by Prince Charles and The Duchess of Cornwall on 13 July 2005. In 2008 a large amount of equipment was purchased from the 2 ft 6 in (762 mm) gauge military railway at RNAD Trecwn, including a large quantity of track components and three diesel locomotives. In 2011, the railway celebrated the 60th anniversary as a heritage line and In April 2012, locomotive No.2 Dolgoch appeared at the Steel Steam and Stars Gala at the Llangollen Railway, running on a temporary section of narrow gauge track. In June 2013 the railway was awarded the Queen’s Award for Voluntary Service. 2015 was the 150th anniversary of the official opening of the railway. The Talyllyn has also inspired many other people; The fictional Skarloey Railway, which featured in Thomas the Tank Engine by The Rev. W. Awdry, was based on the Talyllyn Railway and preservation of the line inspired the Ealing Comedy film The Titfield Thunderbolt.

GWR 3440 City of Truro

The steam locomotive GWR 3440 (3717) City Of Truro is one of the contenders for the first steam locomotive to travel in excess of 100 miles per hour (160.9 km/h). It acheived this feat during a run between two quarter-mile posts whilst hauling the “Ocean Mails” special from Plymouth to London Paddington on 9 May 1904 when it was timed at 8.8 seconds. This timing was recorded from the train by Charles Rous-Marten, who wrote for The Railway Magazine and other journals. If exact (Rous-Marten’s stopwatch read in multiples of 1/5 second), this time would correspond to a speed of 102.3 mph (164.6 km/h), while 9 seconds would correspond to exactly 100 mph. However only the overall timings for the run were put into print; and neither The Times report of the following day nor Rous-Marten’s article in The Railway Magazine of June 1904 mentioned the maximum speed. However The morning after the run two local Plymouth newspapers did report that the train had reached a speed between 99 and 100 miles an hour whilst descending Wellington bank in Somerset. This claim was based on the stopwatch timings of a postal worker, William Kennedy, who was also on the train. 

GWR 3440 (3717) City Of Truro is a Great Western Railway (GWR) 3700 (or ‘City’) Class 4-4-0 locomotive, designed by George Jackson Churchward and built at the GWR Swindon Works in 1903. (It was rebuilt to a limited extent in 1911 and 1915, and renumbered 3717 in 1912). Itcontinued in everyday service until it was rendered obsolete in 1931, being withdrawn from service in March that year. The historical significance of City of Truro led to the locomotive’s survival after withdrawal from service, with the GWR’s Chief Mechanical Engineer Charles Collett asking that the engine be preserved at the London and North Eastern Railway’s Railway Museum at York when she was withdrawn in 1931, after the directors of the GWR had refused to preserve the engine at the company’s expense. It was donated to the LNER, being sent from Swindon on 20 March 1931, and was subsequently displayed at the new museum in York.

In 1957 City of Truro was returned to service by British Railways Western Region. The locomotive was based at Didcot, and was used both for hauling special excursion trains and for normal revenue services, usually on the Didcot, Newbury and Southampton line, and was renumbered back to 3440, and repainted into the ornate livery it carried at the time of its speed record in 1904, despite this being inaccurate due to its minor rebuilding in 1911. She was withdrawn for a second time in 1961. She was taken to Swindon’s GWR Museum in 1962 where, renumbered back to 3717 and in plain green livery with black frames, she stayed until 1984, when she was restored for the GWR’s 150th anniversary celebrations the following year. After that she returned to the National Railway Museum from where she was occasionally used on main line outings. She made a guest appearance in an exhibition called National Railway Museum on Tour which visited Swindon in 1990.

Her latest restoration to full working order was undertaken in 2004, at a cost of £130,000, to mark the 100th anniversary of her record-breaking run, and the loco has subsequently hauled several trains on UK main lines, although due to the lack of certain safety features she no longer operates on the main line. Her latest restoration to full working order was undertaken in 2004, at a cost of £130,000, to mark the 100th anniversary of her record-breaking run, and the loco has subsequently hauled several trains on UK main lines, although due to the lack of certain safety features she no longer operates on the main line. In 2010 as part of the celebrations to mark the 175th anniversary of the founding of the GWR City of Truro was repainted and took up its 3717 guise once again. This is the first time it has carried an authentic livery for its current state whilst operating in preservation. GWR 3717 was withdrawn from traffic at the Bodmin & Wenford Railway in early September 2011 with serious tube leaks, and was moved to Shildon Locomotion Museum and placed on static display at the National Railway Museum where she has remained ever since (I was lucky enough to see it in steam at the Severn Valley Railway’s 2008 Autumn Steam Gala).

Richard Trevithick

Cornish Inventor and Mining Engineer Richard Trevithick was born 13 April 1771 in Tregajorran, Cornwall and his most significant success was the high pressure steam engine and he also built the first full-scale working railway steam locomotive. On 21 February 1804 the world’s first locomotive-hauled railway journey took place as Trevithick’s unnamed steam locomotive hauled a train along the tramway of the Pen-y-darren Ironworks, near Merthyr Tydfil in Wales. Trevithick was an engineer at a mine in 1797 and with the help of Edward Bull pioneered the use of a High Pressure Steam Engine, but ran afoul of Matthew Boulton & James Watt, who were working on a similar device and held a number of Patents. He improved boiler technology allowing the safe production of high pressure steam, able to move pistons in steam engines instead of using atmospheric pressure. 

Richard Trevithicks next door neighbour in Redruth William Murdoch also demonstrated a model steam carriage to Trevithick in 1794. Meanwhile Oliver Evans in the U.S. Was working on something similar and Arthur Woolf was also experimenting on a similar engine whilst working as the Chief Engineer of the Griffin Brewery. However Trevithick actually made high pressure steam work, eliminating the need for a condenser, and allowing the use of a smaller cylinder, saving space and weight. Making the engine more compact, lighter and small enough to carry its own weight even with a carriage attached. Trevithick started building his first stationary models of high pressure steam engines, then attached one to a road carriage. Exhaust steam was vented via a vertical chimney, thus avoiding a condenser and any possible infringements of Watt’s patent, with linear motion being converted into circular motion via a crank instead of a beam. Trevithick built a full-size steam road locomotive in 1801 in Camborne. He named the carriage ‘Puffing Devil’ and, on Christmas Eve it successfully carried seven men from Fore Street up Camborne Hill, past Camborne Cross, to the nearby village of Beacon with his cousin and associate, Andrew Vivian, steering. This is inspired the popular Cornish folk song “Camborne Hill”. However, a steam wagon built in 1770 by Nicolas-Joseph Cugnot may have an earlier claim. During further tests, Trevithick’s locomotive was prone to break down and on one occasion the Boiler was allowed to run dry and the machine exploded. Trevithick did not consider this a serious setback, but rather operator error. In 1802 Trevithick took out a patent for his high pressure steam engine.

London Steam Carriage

To prove his ideas, he built a stationary engine at the Coalbrookdale Company’s works in Shropshire in 1802. The Coalbrookdale company then built a rail locomotive for him, but little is known about it, including whether or not it actually ran. To date, the only known information about it comes from a drawing preserved at the Science Museum, London, together with a letter written by Trevithick to his friend, Davies Giddy. The design incorporated a single horizontal cylinder enclosed in a return-flue boiler. A flywheel drove the wheels on one side through spur gears, and the axles were mounted directly on the boiler, with no frame. Unfortunately The Puffing Devil could not maintain sufficient steam pressure and would have been of little practical use. In 1803 he built another steam-powered road vehicle called the London Steam Carriage, which attracted much attention from the public and press when he drove it that year in London from Holborn to Paddington and back. It was uncomfortable for passengers and proved more expensive to run than a horse-drawn carriage and so the project was abandoned.

In 1802 Trevithick built one of his high pressure steam engines to drive a hammer at the Pen-y-Darren Ironworks in Merthyr Tydfil, South Wales. With the assistance of Rees Jones, an employee of the iron works and under the supervision of Samuel Homfray, the proprietor, he mounted the engine on wheels and turned it into a locomotive. In 1803 Trevithick sold the patents for his locomotives to Samuel Homfray. Homfrey was so impressed with Trevithick’s locomotive that he made a bet with another ironmaster, Richard Crawshay, for 500 guineas that Trevithick’s steam locomotive could haul 10 tons of iron along the Merthyr Tydfil Tramroad from Penydarren to Abercynon , a distance of 9.75 miles (16 km). Amid great interest from the public, on 21 February 1804 it successfully carried 10 tons of iron, 5 wagons and 70 men the full distance in 4 hours and 5 minutes, an average speed of approximately 2.4 mph (3.9 km/h). As well as Homfray, Crawshay and the passengers, other witnesses included Mr. Giddy, a respected patron of Trevithick and an ‘engineer from the Government’. The locomotive was relatively primitive comprising of a boiler with a single return flue mounted on a four wheel frame. At one end, a single cylinder with very long stroke was mounted partly in the boiler, and a piston rod crosshead ran out along a slidebar, an arrangement that looked like a giant trombone. As there was only one cylinder, this was coupled to a large flywheel mounted on one side. The rotational inertia of the flywheel would even out the movement that was transmitted to a central cog-wheel that was, in turn connected to the driving wheels. It used a high pressure cylinder without a condenser, the exhaust steam was sent up the chimney assisting the draught through the fire, increasing efficiency even more. The proprietor of the Wylam colliery near Newcastle, heard of the success in Wales and wrote to Trevithick asking for locomotive designs. These were sent to John Whitfield at Gateshead, Trevithick’s agent, who built what was probably the first locomotive to have flanged wheels. Unfortunately Trevithick’s machine was too heavy for the wooden track.

Pen-y-Darren

Then In 1808 Trevithick publicised his steam railway locomotive expertise by building a new locomotive called ‘Catch me who can’, built for him by John Hazledine and John Urpeth Rastrick at Bridgnorth in Shropshire, This was similar to that used at Penydarren and named by Mr. Giddy’s daughter. This was Trevithick’s third railway locomotive after those used at Pen-y-darren ironworks and the Wylam colliery. He ran it on a circular track just south of the present day Euston Square tube station in London, Admission to the “steam circus” was one shilling including a ride and it was intended to show that rail travel was faster than by horse. So Recently a group of dedicated people down at the Severn Valley Railway decided to build a replica of Catch-Me-Who-Can. In 1805 Cornish Engineer Robert Vazie, excavated a tunnel under the River Thames at Rotherhithe and had serious problems with flooding getting no further than sinking the end shafts. So Trevithick was consulted and paid £1000 (the equivalent of £67,387 as of 2014 to complete the tunnel, a length of 1220 feet (366 m). In August 1807 Trevithick began driving a small pilot tunnel and By 23 December after it had progressed 950 feet (285 m) however progress was delayed after The tunnel was flooded twice and Trevithick, was nearly drowned consequently the project was not completed until 1843 when Sir Marc and Isambard Kingdom Brunel built a tunnel under the Thames. Trevithick’s used a submerged tube to cross the Detroit River in Michigan with the construction of the Michigan Central Railway Tunnel, under the engineering supervision of The New York Central Railway’s engineering vice president, William J Wilgus. Construction began in 1903 and was completed in 1910. The Detroit–Windsor Tunnel which was completed in 1930 for automotive traffic, and the tunnel under the Hong Kong harbour were also submerged tube designs. Trevithick’s high-pressure steam engines had many applications including cannon manufacture, stone crushing, rolling mills, forge hammers, blast furnace blowers and traditional mining. He also built a barge powered by paddle wheels and several dredgers.

In 1808, Trevithick entered a partnership with West Indian Merchant Robert Dickinson, who had supported Trevithick’s patents. Including the ‘Nautical Labourer’; a steam tug with a floating crane propelled by paddle wheels. He also patented Iron tanks in ships for storage of cargo and water instead of in wooden caskS, these were also used to raise sunken wrecks by placing them under the wreck and creating buoyancy by pumping them full of air. In 1810 a wreck near Margate was raised in this way. Trevithick worked on many other ideas on improvements for ships: iron floating docks, iron ships, telescopic iron masts, improved ship structures, iron buoys and using heat from the ships boilers for cooking. In May 1810, he caught typhoid and nearly died and in February 1811 he and Dickinson were declared bankrupt. Around 1812, Trevithick designed the ‘Cornish boiler’. These were horizontal, cylindrical boilers with a single internal fire tube or flue passing horizontally through the middle. Hot exhaust gases from the fire passed through the flue thus increasing the surface area heating the water and improving efficiency. These types were installed in the Boulton and Watt pumping engines at Dolcoath and more than doubled their efficiency.

Coalbrookdale Engine 

Again in 1812, he installed a new ‘high-pressure’ experimental steam engine also with condensing at Wheal Prosper. This became known as the ‘Cornish engine’ and was the most efficient in the world at that time. Other Cornish engineers contributed to its development but Trevithick’s work was predominant. In the same year he installed another high-pressure engine, though non-condensing, in a threshing machine on a farm at Probus, Cornwall. It was very successful and proved to be cheaper to run than the horses it replaced. It ran for 70 years and is exhibited at the Science Museum. Trevithick attempted to build a ‘recoil engine’ similar to the aeolipile described by Hero of Alexandria in about AD 50, this comprised a boiler feeding a hollow axle to route the steam to a catherine wheel with two fine-bore steam jets on its circumference. The first wheel was 15 feet (4.6 m) in diameter and a later attempt was 24 feet (7.3 m) in diameter. To get any usable torque, steam had to issue from the nozzles at a very high velocity and in such large volume that it proved not to operate with adequate efficiency. Today this would be recognised as a reaction turbine.

Around 1811 a miner, named Francisco Uville bought one of Trevithick’s Hight Pressure Steam Engine for draining water from his silver mine at Cerro de Pasco, Peru. In 1813 Uville set sail again for England and, having fallen ill on the way, broke his journey via Jamaica. When he had recovered he boarded the Falmouth packet ship ‘Fox’ coincidentally with one of Trevithick’s cousins on board the same vessel. On 20 October 1816 Trevithick left Penzance on the whaler ship Asp accompanied by a lawyer named Page and a boilermaker bound for Peru where he travelled widely, acting as a consultant on mining methods. The government granted him certain mining rights and he found mining areas, but did not have the funds to develop them, with the exception of a copper and silver mine at Caxatambo.

After serving in the army of Simon Bolivar he returned to Caxatambo but was forced to leave the area and abandon £5000 worth of ore ready to ship. Uville died in 1818 and Trevithick soon returned to Cerro de Pasco After leaving Cerro de Pasco, Trevithick passed through Ecuador on his way to Bogotá in Colombia. He arrived in Costa Rica in 1822 to build mining machinery. However transporting ore and equipment, using the San Juan River, the Sarapiqui River, and the railway proved treacherous And Trevithick was nearly killed on at least two occasions – he nearly drowned, and was nearly devoured by an alligator. He made his way to Cartagena where he met Robert Stephenson who was on his way home from Colombia. And Stephenson gave Trevithick £50 to help his passage home. He arrived at Falmouth in October 1827 with few possessions other than the clothes he was wearing, unsurprisingly Trevithick never returned to Costa Rica. In 1829 he built a closed cycle steam engine followed by a vertical tubular boiler. In1830 he invented an early form of storage room heater, which comprised a small fire tube boiler with a detachable flue which could be heated either outside or indoors with the flue connected to a chimney. To commemorate the passing of the Reform Bill in 1832 he designed a massive column to be 1000 feet (300 m) high, 100 feet (30 m) in diameter at the base tapering to 12 feet (3.6 m) at the top where a statue of a horse would have been mounted. but it was never built. he was also invited to work on an engine of a new vessel at Dartford, Which involved a reaction turbine.

Despite his many innovations Richard Trevithick died penniless on April 22 1833 while lodging at the Bull Hotel, Dartford After being taken ill with pneumonia. Following a week’s confinement in bed he died on the morning of 22 April 1833. Trevithick was buried in an unmarked grave in St Edmunds Burial Ground, East Hill, Dartford. The burial ground closed in 1857, with the gravestones being removed in the 1960s. However A plaque marks the approximate spot believed to be the site of the grave on the side of the park, near the East Hill gate. He made a valuable contribution to engineering and technology and many replicas of his machinery have since been built including A replicas of the Coalbrookdale, Pen Y Darren, Puffing Devil and Catch-me-who-can which has been built at the Severn Valley Railway

Sir Nigel Gresley CME LNER

Best known for designing the A4 steam locomotive, Sir Nigel Gresley, The Chief mechanical Engineer of London North Eastern Railway, sadly passed away 5 April 1941. He was Born 19 June 1876 he became one of Britain’s most famous steam locomotive engineers, rising to become Chief Mechanical Engineer (CME) of the London and North Eastern Railway (LNER). He was the designer of some of the most famous steam locomotives in Britain, including the LNER Class A1 and LNER Class A4 4-6-2 Pacific engines. An A1, Flying Scotsman, was the first steam locomotive officially recorded over 100 mph in passenger service, and an A4, number 4468 Mallard, still holds the record for being the fastest steam locomotive in the world (126 mph). Gresley’s engines were considered elegant, both aesthetically and mechanically. His invention of a three-cylinder design with only two sets of Walschaerts valve gear, the Gresley conjugated valve gear, produced smooth running and power at lower cost than would have been achieved with a more conventional three sets of Walschaerts valve gear .

Gresley was born in Edinburgh, but was raised in Netherseal, Derbyshire, a member of the cadet branch of a family long seated at Gresley, Derbyshire. After attending school in Sussex and at Marlborough College, Gresley served his apprenticeship at the Crewe works of the London and North Western Railway, afterwards becoming a pupil under John Aspinall at Horwich of the Lancashire and Yorkshire Railway (L&YR). After several minor appointments with the L&YR he was made Outdoor Assistant in the Carriage and Wagon Department in 1901; in 1902 he was appointed Assistant Works Manager at Newton Heath depot, and Works Manager the following year.


This rapid rise in his career continued and, in 1904, he became Assistant Superintendent of the Carriage and Wagon Department of the L&YR. A year later, he moved to the Great Northern Railway (GNR) as Carriage and Wagon Superintendent. He succeeded Henry A. Ivatt as CME of the GNR on 1 October 1911. At the 1923 Grouping, he was appointed CME of the newly formed LNER (the post had originally been offered to the ageing John G. Robinson; Robinson declined and suggested the much younger Gresley). In 1936, Gresley was awarded an honorary DSc by Manchester University and a knighthood by King Edward VIII; also in that year he presided over the IMechE

During the 1930s, Sir Nigel Gresley lived at Salisbury Hall, near St. Albans in Hertfordshire. Gresley developed an interest in breeding wild birds and ducks in the moat; intriguingly, among the species were Mallard ducks. The Hall still exists today as a private residence and is adjacent to the de Havilland Aircraft Heritage Centre, with its links to the design of the famous Mosquito aircraft during World War II .In 1936, Gresley designed the 1,500V DC locomotives for the proposed electrification of the Woodhead Line between Manchester and Sheffield. However The Second World War forced the postponement of the project, which was completed in the early 1950s. Sadly Gresley did not live to see the result, tragically dying after a short illness on 5 April 1941 he was buried in Netherseal, Derbyshire. Gresley was succeeded as the LNER CME by Edward Thompson. There is a statue of Sir Nigel Gresley at Kings Cross in London, complete with duck although there are moves afoot to have the duck removed and the new statue without the duck was unveiled 5 April 2016.

Pen-y-Darren

On 21 February 1804, the world’s first self propelling locomotive, the Pen-y-Darren, ran along the Merthyr Tydfil treatment road from Pen-y-Darren to Abercynon a distance of 9.75 miles(16 kilometres). The Pen-y-Darren was based on a 1802, high-pressure steam engines which had been built by Cornish engineer Richard Trevithick to drive a hammer at the Pen-y-Darren Ironworks in Merthyr Tydfil, Mid Glamorgan . With the assistance of Rees Jones, an employee of the iron works and under the supervision of Samuel Homfray, the proprietor, The engine was mounted on wheels and turned it into a locomotive. In 1803, Trevithick sold the patents for his locomotives to Samuel Homfray.

Homfray was so impressed with Trevithick’s locomotive that he made a bet with another ironmaster, Richard Crawshay, for 500 guineas that Trevithick’s steam locomotive could haul ten tons of iron along the Merthyr Tydfil Tramroad from Penydarren to Abercynon. Amid great interest from the public, on 21 February 1804 it successfully carried 10 tons of iron, 5 wagons and 70 men the full distance in 4 hours and 5 minutes, an average speed of approximately 2.4 mph (3.9 km/h). as well as Homfray, Crawshay and the passengers, other witnesses includedMr. Giddy, a respected patron of Trevithick and an ‘engineer from the Government’. the engineer from the government was probably a safety inspector and particularly interested in the boiler’s ability to withstand high steam pressures.

The configuration of the Pen-y-darren engine differed from the Coalbrookdale engine. The cylinder was moved to the other end of the boiler so that the firedoor was out of the way of the moving parts. This obviously also involved putting the crankshaft at the chimney end. The locomotive comprised a boiler with a single return flue mounted on a four wheel frame at one end, a single cylinderwith very long stroke was mounted partly in the boiler, and a piston rod crosshead ran out along a slidebar, an arrangement that looked like a giant trombone. As there was only one cylinder, this was coupled to a large flywheel mounted on one side. The rotational inertia of the flywheel would even out the movement that was transmitted to a central cog-wheel that was, in turn connected to the driving wheels. It used a high-pressure cylinder without a condenser, the exhaust steam was sent up the chimney assisting the draught through the fire, increasing efficiency even more.

Pen-y-Darren

Despite many people’s doubts, he won the bet and showed that, provided that the gradient was sufficiently gentle, it was possible to successfully haul heavy carriages along a “smooth” iron road using the adhesive weight alone of a suitably heavy and powerful steam locomotive. Trevithick’s was probably the first to do so; however some of the short cast iron plates of the tramroad broke under the locomotive as they were intended only to support the lighter axle load of horse-drawn wagons and so the tramroad returned to horse power after the initial test run. Homfray was pleased he won his bet. The engine was placed on blocks and reverted to its original stationary job of driving hammers. In modern Merthyr Tydfil, behind the monument to Trevithick’s locomotive is a stone wall, the sole remainder of the former boundary wall of Homfray’s Penydarren House. A full-scale working reconstruction of the Pen-y-darren locomotive was commissioned in 1981 and delivered to the Welsh Industrial and Maritime Museum in Cardiff; when that closed, it was moved to the National Waterfront Museum in Swansea. During special events it is run on a 40m length of rail outside the museum.

Metropolitan Railway

The Metropolitan Railway (also known as the Met opened on 10 January 1863 between Farringdon Station and London Paddington Station. It served London from 1863 to 1933, its main line heading north-west from the capital’s financial heart in the City to what were to become the Middlesex suburbs. Its first line connected the main-line railway termini at Paddington, Euston, and King’s Cross to the City. The first section was built beneath the New Road using the “cut-and-cover” method between Paddington and King’s Cross and in tunnel and cuttings beside Farringdon Road from King’s Cross to near Smithfield, near the City. It opened to the public on 10 January 1863 with gas-lit wooden carriages hauled by steam locomotives, and became the world’s first passenger-carrying designated underground railway.

The line was soon extended from both ends, and northwards via a branch from Baker Street. It reached Hammersmith in 1864, Richmond in 1877 and completed the Inner Circle in 1884, however the most important route was the line north into the Middlesex countryside, where it stimulated the development of new suburbs. Harrow was reached in 1880, and the line eventually extended to Verney Junction in Buckinghamshire, more than 50 miles (80 kilometres) from Baker Street and the centre of London.

Electric traction was introduced in 1905 and by 1907 electric multiple units operated most of the services, though electrification of outlying sections did not occur until decades later. Unlike other railway companies in the London area, the Met developed land for housing, and after World War I promoted housing estates near the railway using the “Metro-land” brand. On 1 July 1933, the Met was amalgamated with the Underground Electric Railways Company of London and the capital’s tramway and bus operators to form the London Passenger Transport Board. Former Met tracks and stations are used by the London Underground’s Metropolitan, Circle, District, Hammersmith & City, Piccadilly, and Jubilee lines, and by Chiltern Railways.

Gwr 3440 City of Truro

Best Known for designing GWR 3440 City of Truro, which held the unofficial record for the first steam locomotive to travel at over 100 miles per hour, British railroad engineer George Jackson Churchward sadly died 19 December 1933. He was Born 31st January 1857, and was Apprenticed in the Newton Abbot works of the South Devon Railway in the GWR’s Swindon Works, and rose from draughtsman through several positions, including Carriage Works Manager, and in 1897 was appointed Chief Assistant to William Dean. After 5 years as Chief Assistant, he succeeded Dean as Locomotive Superintendent. In the 19th and early 20th century, railway companies were fiercely competitive. Speed meant revenue and speed was dependent on engineering. Churchward delivered to the GWR from Swindon a series of class-leading and innovative locomotives. Arguably, from the early 1900s to the 1920s the Great Western’s 2-cylinder and 4-cylinder 4-6-0 designs were substantially superior to any class of locomotive of the other British railway companies. On one occasion, the GWR’s directors confronted Churchward, and demanded to know why the London and North Western Railway were able to build three 4-6-0 locomotives for the price of two of Churchward’s “Stars”. Churchward allegedly gave a terse response: “Because one of mine could pull two of their bloody things backwards!”

Churchward preferred locomotives without trailing wheels, to maximise adhesion on the South Devon banks of Dainton, Rattery and Hemerdon on the West of England mainline to Plymouth, then the Great Western’s most important route. Due to the weight and dimensional restrictions required to pass over all the GWR’s lines, he designed narrow fireboxes, but with good circulation. Combining high boiler pressures with superheating made efficient use of the high calorific-value steam coal from the mines in South Wales. Other refinements included feed-water distribution trays beneath the top-fitted clack boxes to minimize boiler stress and large bearing surfaces to reduce wear. 

Churchward also made advancements in carriage design. He introduced the GWR’s first steel-roofed coaches and is also credited with introducing to Britain several refinements from American and French steam locomotive practice. Among these were the tapered boiler and the casting of cylinders and saddles together, in halves. His choice of outside cylinders for express locomotives was also not standard in Britain for that time. Many elements of British practice were retained, of course. His locomotives for the most part used British plate frames, and the crew was accommodated in typical British fashion. The selection of a domeless boiler was more common to Britain than to the U.S. In 1922 Churchward retired, and C. B. Collett inherited his legacy of excellent, standardised designs. These designs influenced British locomotive practice to the end of steam. Major classes built by the LMS and even British Railways 50 years later are clearly developments of Churchward’s basic designs. The LMS Stanier Class 5 4-6-0 and the BR standard class 5 are both derived from his Saint class early examples of which date to 1902.

The first class of locomotives with which Churchward won success and worldwide recognition was the 4-4-0 ‘City’ class, which soon became one of the most famous class locomotives in the world at the time. One of them, City of Truro, became the first engine in the world to haul a train at 100 miles per hour in 1904 (although unauthenticated). He went on to build the ‘County’ class and the ‘Star’ class. Number 3440 City Of Truro is a Great Western Railway (GWR) 3700 (or ‘City’) Class 4-4-0 locomotive, designed by George Jackson Churchward and built at the GWR Swindon Works in 1903. (It was rebuilt to a limited extent in 1911 and 1915, and renumbered 3717 in 1912). It is one of the contenders for the first steam locomotive to travel in excess of 100 miles per hour (160.9 km/h). City of Truro was timed at 8.8 seconds between two quarter-mile posts whilst hauling the “Ocean Mails” special from Plymouth to London Paddington on 9 May 1904. This timing was recorded from the train by Charles Rous-Marten, who wrote for The Railway Magazine and other journals. If exact (Rous-Marten’s stopwatch read in multiples of 1/5 second), this time would correspond to a speed of 102.3 mph (164.6 km/h), while 9 seconds would correspond to exactly 100 mph.Its maximum speed has been the subject of much debate over the years.

LNER A3 Pacific no.4472 Flying Scotsman

The LNER Class A3 Pacific steam locomotive No. 4472 Flying Scotsman became the first Steam Locomotive to officially exceed 100mph on November 30 1934. The Flying Scotsman was built in 1923 for the London and North Eastern Railway (LNER) at Doncaster Works to a design of H.Nigel Gresley. It was employed on long-distance express trains on the LNER and its successors, British Railways Eastern and North-Eastern Regions, notably on the 10am London to Edinburgh Flying Scotsman train service after which it was named. The locomotive is notable for having set two world records for steam traction; becoming the first steam locomotive to be officially authenticated at reaching 100 miles per hour (160.9 km/h) on 30 November 1934, and then setting a record for the longest non-stop run by a steam locomotive when it ran 422 miles (679 km) on 8 August 1938. It was retired from regular service in 1963 after covering 2,076,000 miles (3,341,000 km), Flying Scotsman gained considerable fame in preservation under the ownership of Alan Pegler, William McAlpine, Tony Marchington and finally the National Railway Museum. As well as hauling enthusiast specials in the United Kingdom, the locomotive toured extensively in the United States (from 1969 to 1973) and Australia (from 1988 to 1989).Flying Scotsman has been described as the world’s most famous steam locomotive.

The locomotive was completed in 1923, construction having been started under the auspices of the Great Northern Railway (GNR). It was built as an A1, initially carrying the GNR number 1472, because the LNER had not yet decided on a system-wide numbering scheme’ Flying Scotsman was something of a flagship locomotive for the LNER. It represented the company at the British Empire Exhibition at Wembley in 1924 and 1925. Before this event, in February 1924 it acquired its name and the new number of 4472. From then on it was commonly used for promotional purposes.With suitably modified valve gear, this locomotive was one of five Gresley Pacifics selected to haul the prestigious non-stop Flying Scotsman train service from London to Edinburgh, hauling the inaugural train on 1 May 1928. For this the locomotives ran with a new version of the large eight-wheel tender which held 9 tons of coal. This and the usual facility for water replenishment from the water trough system enabled them to travel the 392 miles (631 km) from London to Edinburgh in eight hours non-stop. The tender included a corridor connection and tunnel through the water tank giving access to the locomotive cab from the train to permit replacement of the driver and fireman without stopping the train. The following year the locomotive appeared in the film The Flying Scotsman. On 30 November 1934, running a light test train, 4472 became the first steam locomotive to be officially recorded at 100 mph (160.9 km/h) and earned a place in the land speed record for railed vehicles; the publicity-conscious LNER made much of the fact.

On 22 August 1928, there appeared an improved version of this Pacific type classified A3; older A1 locomotives were later rebuilt to conform. On 25 April 1945, A1-class locomotives not yet rebuilt were reclassified A10 in order to make way for newer Thompson and Peppercorn Pacifics. Flying Scotsman emerged from Doncaster works on 4 January 1947 as an A3, having received a boiler with the long “banjo” dome of the type it carries today. By this time it had been renumbered twice: under Edward Thompson’scomprehensive renumbering scheme for the LNER, it became no. 502 in January 1946; but in May the same year, under an amendment to that plan, it become no. 103. Following nationalisation of the railways on 1 January 1948, almost all of the LNER locomotive numbers were increased by 60000, and Flying Scotsman was renumbered 60103 in December 1948. Between 5 June 1950 and 4 July 1954, and between 26 December 1954 and 1 September 1957, under British Railways ownership, it became 60103 and was allocated to Leicester Central shed on the Great Central, running Nottingham Victoria to London Marylebone services via Leicester Central.All A3 Pacifics were subsequently fitted with a double Kylchap chimney to improve performance and economy. This caused soft exhaust and smoke drift that tended to obscure the driver’s forward vision; the remedy was found in the German-type smoke deflectors fitted from 1960, which somewhat changed the locomotives’ appearance but solved the problem

60103 Flying Scotsman

In 1963 Flying Scotsman Number 60103 finished working. A Proposal to save it was made by a group called “Save Our Scotsman”, they were unable to raise the required £3,000. Luckily Alan Pegler, Having first seen the locomotive at the British Empire Exhibition in 1924, bought Flying Scotsman using money he had received for his share holding when Northern Rubber was sold to Pegler’s Valves. He spent the next few years spending large amounts of money having the locomotive restored at Doncaster Works as closely as possible to its LNER condition: the smoke deflectors were removed; the double chimney was replaced by a single chimney; and the tender was replaced by one of the corridor type with which the locomotive had run between 1928 and 1936. It was also repainted into LNER livery, although the cylinder sides were painted green, whereas in LNER days they were always black. Peglar then persuaded the British Railways Board to let him run enthusiasts specials, And it worked a number of rail tours, including a non-stop London–Edinburgh run in 1968 – the year steam traction officially ended on BR. Then in September 1966 Pegler purchased a second corridor tender, and adapted as an auxiliary water tank; retaining its through gangway, this was coupled behind the normal tender.

Pegler had a contract permitting him to run his locomotive on BR until 1972, but following overhaul in the winter of 1968–69 then Prime Minister Wilson agreed to support Pegler running the locomotive in the United States and Canada to support British exports. To comply with local railway regulations, it was fitted with: acowcatcher; bell; buckeye couplings; American-style whistle air brakes; and high-intensity headlamp. the tour ran into immediate problems, with some states seeing the locomotive as a fire-hazard. However, the train ran from Boston to New York, Washington and Dallas in 1969; from Texas to Wisconsin and finishing in Montreal in 1970; and from Toronto to San Francisco in 1971 — a total of 15,400 miles (24,800 km).However, in 1970 Ted Heath’s Conservatives ousted Wilson’s Labour Party, and withdrew financial support from the tour; but Pegler decided to return for the 1970 season. By the end of that season’s tour, the money had run out and Pegler was £132,000 in debt, with the locomotive in storage at the U.S. ArmySharpe Depot to keep it away from unpaid creditors.Pegler worked his passage home from San Francisco to England on a P&O cruise ship in 1971, giving lectures about trains and travel; he was declared bankrupt in the High Court 1972. Fears then arose for the engine’s future, the speculation being that it could take up permanent residence in America or even be cut up. However in January 1973, William McAlpine stepped in and bought the locomotive for £25,000. After its return to the UK via the Panama Canal in February 1973 the locomotive Was restored at Derby Works. Trial runs took place on the Paignton and Dartmouth Steam Railway in summer 1973, after which it was transferred to Steamtown (Carnforth).

In October 1988 the locomotive arrived in Australia to take part Australia’s bicentenery celebrations as a central attraction in the Aus Steam ’88 festival. During the course of the next year it travelled more than 45,000 kilometres (28,000 mi) over Australian rails, concluding with a return transcontinental run from Sydney to Perth via Alice Springs. Other highlights included Flying Scotsman double-heading with NSWGR Paific locomotive 3801, a triple-parallel run alongside broad gauge Victorian Railways R class locomotives, parallel runs alongside South Australian Railways locomotives 520and 621, and a reunion with GWR 4073 Class Pendennis Castle in Perth. On 8 August 1989 Flying Scotsman set another record en route to Alice Springs from Sydney, travelling 679 kilometres (422 mi) from Parkes to Broken Hill non-stop, the longest such run by a steam locomotive ever recorded. A plaque was affixed to the engine To record the event.

Flying Scotsman Returned to the UK, by 1995 and was stored at Southall Railway Centre in West London. The locomotive was now owned by a consortium that included McAlpine as well as music guru and well-known railway enthusiast Pete Waterman. Facing an uncertain future owing to the cost of restoration and refurbishment , salvation came in 1996 when Dr Tony Marchington, bought the locomotive, and had it restored over three years to running condition at a cost of £1 million. Sadly in September 2003 Marchington was declared bankrupt and CEO Peter Butler stated that the company only had enough cash to trade until April 2004. The locomotive was then bought in April 2004 by the National Railway Museum in York, and it is now part of the National Collection. it ran for a while to raise funds for its forthcoming 10-year major boiler recertification In January 2006, Flying Scotsman entered the Museum’s workshops for a major overhaul to return it to Gresley’s original specification and renew its boiler certificate. In 2013 The locomotive was moved to Bury work to return it to running condition by 2015. Sadly because the repairs proved prohibitively expensive, this took longer than expected and once again Flying Scotsman’s future looked uncertain. However It was rebuilt And LNER 4472 Flying Scotsman has Since visited a number of events. The last time I saw Flying Scotsman was at the Severn Valley Railway Pacific Power event alongside LNER A1 Pacific 60163 Tornado.

Sir John Fowler KCMG LLG

English civil engineer Sir John Fowler, 1st Baronet KCMG LLD sadly died 20 November 1898. He was born 15 July 1817. in Wadsley, Sheffield, Yorkshire, England, to land surveyor John Fowler and his wife Elizabeth (née Swann). He was educated privately at Whitley Hall near Ecclesfield. He trained under John Towlerton Leather, engineer of the Sheffield waterworks, and with Leather’s uncle, George Leather, on the Aire and Calder Navigation an railway surveys. From 1837 he worked for John Urpeth Rastrick on railway projects including the London and Brighton Railway and the unbuilt West Cumberland and Furness Railway. He then worked again for George Leather as resident engineer on the Stockton and Hartlepool Railway and was appointed engineer to the railway when it opened in 1841. Fowler initially established a practice as a consulting engineer in the Yorkshire and Lincolnshire area, but, a heavy workload led him to move to London in 1844. He became a member of the Institution of Mechanical Engineers in 1847, the year the Institution was founded, and a member of the Institution of Civil Engineers in 1849.

He specialised in the construction of railways and railway infrastructure . In 1853, he became chief engineer of the Metropolitan Railway in London, the world’s first underground railway, which opened between Paddington and Farringdon in 1863. Fowler was also engineer for the associated Metropolitan District Railway and the Hammersmith and City Railway. They were built by the “cut-and-cover” method under city streets. To avoid problems with smoke and steam overwhelming staff and passengers on the covered sections of the Metropolitan Railway, Fowler proposed a fireless locomotive. The locomotive was built by Robert Stephenson and Company and was a broad gauge 2-4-0 tender engine. The boiler had a normal firebox connected to a large combustion chamber containing fire bricks which were to act as a heat reservoir. The combustion chamber was linked to the smokebox through a set of very short firetubes. Exhaust steam was re-condensed instead of escaping and feed back to the boiler. The locomotive was intended to operate conventionally in the open, but in tunnels dampers would be closed and steam would be generated using the stored heat from the fire bricks.

The first trial on the Great Western Railway in October 1861 was a failure. The condensing system leaked, causing the boiler to run dry and pressure to drop, risking a boiler explosion. A second trial on the Metropolitan Railway in 1862 was also a failure, and the fireless engine was abandoned, becoming known as “Fowler’s Ghost”. The locomotive was sold to Isaac Watt Boulton in 1865; he intended to convert it into a standard engine but it was eventually scrapped. On opening, the Metropolitan Railway’s trains were provided by the Great Western Railway, but these were withdrawn in August 1863. After a period hiring trains from the Great Northern Railway, the Metropolitan Railway introduced its own Fowler designed, 4-4-0 tank engines in 1864. The design, known as the A class and, with minor updates, the B class, was so successful that the Metropolitan and Metropolitan District Railways eventually had 120 of the engines in use and they remained in operation until electrification of the lines in the 1900s. Today these railways form the majority of the London Underground’s Circle line

Fowler established a busy practice, working on many railway schemes across the country. He became chief engineer for the Manchester, Sheffield and Lincolnshire Railway and was engineer of the East Lincolnshire Railway, the Oxford, Worcester and Wolverhampton Railway and the Severn Valley Railway. Other railways that Fowler consulted for were the London Tilbury and Southend Railway, the Great Northern Railway, the Highland Railway and the Cheshire Lines Railway. Following the death of Isambard Kingdom Brunel in 1859, Fowler was retained by the Great Western Railway. His various appointments involved him in the design of Victoria station in London, Sheffield Victoria station, St Enoch station in Glasgow, Liverpool Central station and Manchester Central station.The latter station’s 210-foot (64 m) wide train shed roof was the second widest unsupported iron arch in Britain after the roof of St Pancras railway station. Fowler’s consulting work extended beyond Britain including railway and engineering projects in Algeria, Australia, Belgium, Egypt, France, Germany, Portugal and the United States. He travelled to Egypt for the first time in 1869 and worked on a number of, mostly unrealised, schemes for the Khedive, including a railway to Khartoum in Sudan which was planned in 1875 but not completed until after his death.

In 1870 he provided advice to an Indian Government inquiry on railway gauges where he recommended a narrow gauge of 3 feet 6 inches (1.07 m) for light railways.He visited Australia in 1886, where he made some remarks on the break of gauge difficulty. Later in his career, he was also a consultant with his partner Benjamin Baker and with James Henry Greathead on two of London’s first tube railways, the City and South London Railway and the Central London Railway. As part of his railway projects, Fowler also designed numerous bridges. In the 1860s, he designed Grosvenor Bridge, the first railway bridge over the River Thames,and the 13-arch Dollis Brook Viaduct for the Edgware, Highgate and London Railway. He is credited with the design of the Victoria Bridge at Upper Arley, Worcestershire, constructed between 1859 and 1861,and the near identical Albert Edward Bridge at Coalbrookdale, Shropshire built from 1863 to 1864. Both remain in use today carrying railway lines across the River Severn. In the 1880s, he was chief engineer for the Forth Railway Bridge, which opened in 1890 and Following the collapse of Sir Thomas Bouch’s Tay Bridge in 1879, Fowler, William Henry Barlow and Thomas Elliot Harrison were appointed in 1881 to a commission to review Bouch’s design for the Forth Railway Bridge. The commission recommended a steel cantilever bridge designed by Fowler and Benjamin Baker, which was constructed between 1883 and 1890

Fowler stood unsuccessfully for parliament as a Conservative candidate in 1880 and 1885. His standing within the engineering profession was very high, to the extent that he was elected president of the Institution of Civil Engineers in 1865, its youngest president. Through his position in the Institution and through his own practice, he led the development of training for engineers. In 1857, he purchased a 57,000 acres (23,000 ha) estate at Braemore in Ross-shire, Scotland, where he spent frequent holidays and where he was a Justice of the Peace and a Deputy Lieutenant of the County.He listed his recreations in Who’s Who as yachting and deerstalking and was a member of the Carlton Club, St Stephen’s Club, the Conservative Club and the Royal Yacht Squadron. He was also President of the Egyptian Exploration Fund.In 1885 he was made a Knight Commander of the Order of Saint Michael and Saint George as thanks from the government for allowing the use of maps of the Upper Nile valley he had had made when working on the Khedive’s projects.

They were the most accurate survey of the area and were used in the British Relief of Khartoum. Following the successful completion of the Forth Railway Bridge in 1890, Fowler was created a baronet, taking the name of his Scottish estate as his territorial designation. Along with Benjamin Baker, he received an honorary degree of Doctor of Laws from the University of Edinburgh in 1890 for his engineering of the bridge. In 1892, the Poncelet Prize was doubled and awarded jointly to Baker and Fowler. Fowler died in Bournemouth, Dorset, 20 November at the age of 81 and is buried in Brompton Cemetery, London. He was succeeded in the baronetcy by his son, Sir John Arthur Fowler, 2nd Baronet sadly he died 25 March 1899 and The baronetcy became extinct in 1933 on the death of Reverend Sir Montague Fowler, 4th Baronet, the first baronet’s third son.

Victoria Bridge

Gare Montparnasse derailment

The Montparnasse derailment occurred on 22 October 1895. It involved the the Granville to Paris express Which was composed of steam locomotive No. 721 hauling two baggage vans, a post van, six passenger carriages and a baggage van. The train had left Granville on time at 8:45 am, but was several minutes late as it approached its Paris Montparnasse terminus with 131 passengers on board. Trying to make up lost time the train entered the station too fast, at a speed of 40–60 kilometres per hour (25–37 mph). The Westinghouse air brake failed and Without sufficient braking the momentum of the train carried it slowly into the buffers, and the locomotive crossed the almost 30-metre (100 ft) wide station concourse, crashing through a 60-centimetre (2 ft) thick wall, before falling onto the Place de Rennes 10 metres (33 ft) below, where it stood on its nose

Amazingly Only two passengers, the fireman, two guards and a passerby in the street sustained injuries.  the only casualty was a woman named Marie-Augustine Aguilard who was killed by falling masonry; after standing in for her husband, a newspaper vendor, while he went to collect the evening papers. The railway company paid for her funeral and provided a pension to care for their two children.

The locomotive driver was fined 50 francs for approaching the station too fast and one of the guards was fined 25 francs as he had been preoccupied with paperwork and failed to apply the handbrake. Fortunately the passenger carriages were undamaged and removed easily. It took forty-eight hours before the legal process and investigation allowed the railway to start removing the locomotive and tender. An attempt was made to move the locomotive with fourteen horses, but this failed. A 250 tonne winch with ten men first lowered the locomotive to the ground and then lifted the tender back in to the station.

When the locomotive reached the railway workshops it was found to have suffered little damage. The train was outside the station for several days and a number of photographs were taken, such as those attributed to Studio Lévy and Sons, L. Mercier, and Henri Roger-Viollet. The Lévy and Sons photograph is out of copyright and is used as the cover page in the book An Introduction to Error Analysis by John Taylor. The picture is also featured on the front cover of American hard rock band Mr. Big’s 1991 album, Lean into It. It also appears as a dream in the novel The Invention of Hugo Cabret and its film adaptation, Hugo. It is referenced in the television series Thomas and Friends in “A Better View For Gordon” and depicted in the comic book The Extraordinary Adventures of Adèle Blanc-Sec. At least one photograph is out of copyright and is used as the cover page of a book by John Taylor and on the front cover of Mr. Big’s album, Lean into It.