Severn Valley Railway Spring Steam Gala 2019

The Severn Valley Railway Spring Steam Gala, takes place from March 15th until March 17th 2019 and features 10 steam locomotives. GWR No. 1450 was also due to work the push-pull autotrain however this will now be replaced by Pannier Tank No. 1501, which will be paired with Autocoach No. 178 and as No. 1501 is not auto-fitted, the service will no longer be push-pull. There are four visiting locomotives which will work alongside the home fleet for the gala. Visiting locomotives this year include:

  • GWR Pannier Tank No. 6430. This tank engine worked Autotrains in the South Wales Valleys from 1940 until 1954, being based at Pontypool and Newport during this time. With thanks to Llangollen Railway.
  • GWR Large Prairie No. 4144. This Large Prairie locomotive was Based at Tondu for a number of years,  and was used for hauling local passenger trains deep in South Wales. With thanks to Great Western Preservation.
  • GWR 5600 No. 5619 “Taffy Tank” This Locomotive regularly hauled Heavy coal trains before being preserved, having been based at Barry for a number of years. With thanks to Telford Horsehay Steam Trust.
  • LNWR ‘Coal Tank’ No. 1054.  This locomotive was built in 1888 and worked the last passenger train over the Merthyr & Abergavenny Railway on January 5th 1958. It was the last surviving member of its class, and was put into store at Abergavenny in the late 1950s where it was fitted with a snow plough in event of disruptive snowfalls during the winter months. It was brought out of storage to assist with the last passenger train over the Merthyr & Abergavenny Railway, on a special excursion. With thanks to the National Trust & Bahamas Locomotive Society.

Home fleet locomotives operating during the Severn Valley Railway Spring Steam Gala include:

  • GWR Saddle Tank No. 813. This locomotive was Originally built for the Port Talbot Railway & Docks Company, and was predominantly used for hauling coal trains and shunting in colliery sidings.
  • GWR Pannier Tank No. 1501. This locomotive was regularly used for hauling long rakes of empty coaching stock in and out of Paddington Station.
  • GWR heavy-freight 2-8-0 No. 2857. This Great Western frieght Locomotive ended its working life in Neath (having spent many years at other sheds in South Wales) after covering 1,276,713 miles.
  • GWR Pannier Tank 0-6-0 No. 7714. This was one of Hundreds of Pannier Tanks which were built for the Great Western Railway, with No. 7714 being based in mid-Wales until 1959 when it was sold to NCB Penallta Colliery in South Wales.
  • GWR Manor 4-6-0 No. 7802 Bradley Manor. The GWR 4-6-0 Manor locomotives are associated with the Cambrian Network, and No. 7802 Bradley Manor could often be found hauling the Cambrian Coast Express from Shrewsbury to the coast in the post-war years.
  • British Rail Standard 4 locomotive No. 75069 . This locomotive was originally built at Swindon Works. The Standard 4s could often be found operating in Wales, with No. 75069 ending up in Barry Scarpyard until it was overhauled at the Severn Valley Railway entering service again in 2019

Pen-y-Darren

On 21 February 1804, the world’s first self propelling locomotive, the Pen-y-Darren, ran along the Merthyr Tydfil treatment road from Pen-y-Darren to Abercynon a distance of 9.75 miles(16 kilometres). The Pen-y-Darren was based on a 1802, high-pressure steam engines which had been built by Cornish engineer Richard Trevithick to drive a hammer at the Pen-y-Darren Ironworks in Merthyr Tydfil, Mid Glamorgan . With the assistance of Rees Jones, an employee of the iron works and under the supervision of Samuel Homfray, the proprietor, The engine was mounted on wheels and turned it into a locomotive. In 1803, Trevithick sold the patents for his locomotives to Samuel Homfray.

Homfray was so impressed with Trevithick’s locomotive that he made a bet with another ironmaster, Richard Crawshay, for 500 guineas that Trevithick’s steam locomotive could haul ten tons of iron along the Merthyr Tydfil Tramroad from Penydarren to Abercynon. Amid great interest from the public, on 21 February 1804 it successfully carried 10 tons of iron, 5 wagons and 70 men the full distance in 4 hours and 5 minutes, an average speed of approximately 2.4 mph (3.9 km/h). as well as Homfray, Crawshay and the passengers, other witnesses includedMr. Giddy, a respected patron of Trevithick and an ‘engineer from the Government’. the engineer from the government was probably a safety inspector and particularly interested in the boiler’s ability to withstand high steam pressures.

The configuration of the Pen-y-darren engine differed from the Coalbrookdale engine. The cylinder was moved to the other end of the boiler so that the firedoor was out of the way of the moving parts. This obviously also involved putting the crankshaft at the chimney end. The locomotive comprised a boiler with a single return flue mounted on a four wheel frame at one end, a single cylinderwith very long stroke was mounted partly in the boiler, and a piston rod crosshead ran out along a slidebar, an arrangement that looked like a giant trombone. As there was only one cylinder, this was coupled to a large flywheel mounted on one side. The rotational inertia of the flywheel would even out the movement that was transmitted to a central cog-wheel that was, in turn connected to the driving wheels. It used a high-pressure cylinder without a condenser, the exhaust steam was sent up the chimney assisting the draught through the fire, increasing efficiency even more.

Pen-y-Darren

Despite many people’s doubts, he won the bet and showed that, provided that the gradient was sufficiently gentle, it was possible to successfully haul heavy carriages along a “smooth” iron road using the adhesive weight alone of a suitably heavy and powerful steam locomotive. Trevithick’s was probably the first to do so; however some of the short cast iron plates of the tramroad broke under the locomotive as they were intended only to support the lighter axle load of horse-drawn wagons and so the tramroad returned to horse power after the initial test run. Homfray was pleased he won his bet. The engine was placed on blocks and reverted to its original stationary job of driving hammers. In modern Merthyr Tydfil, behind the monument to Trevithick’s locomotive is a stone wall, the sole remainder of the former boundary wall of Homfray’s Penydarren House. A full-scale working reconstruction of the Pen-y-darren locomotive was commissioned in 1981 and delivered to the Welsh Industrial and Maritime Museum in Cardiff; when that closed, it was moved to the National Waterfront Museum in Swansea. Several times a year it is run on a 40m length of rail outside the museum.

James Watt FRS FRSE

Scottish inventor, mechanical engineer, and chemist James Watt FRS FRSE was born 30 January 1736 (19 January 1736 OS in Greenock, Renfrewshire. His father was a shipwright, ship owner and contractor, and served as the town’s chief baillie,while his mother, Agnes Muirhead, came from a well educated distinguished family. Watt’s grandfather, Thomas Watt, was a mathematics teacher and baillie to the Baron of Cartsburn. Watt did not attend school regularly; initially he was mostly schooled at home by his mother but later he attended Greenock Grammar School. He exhibited great manual dexterity, engineering skills and an aptitude for mathematics, but is said to have suffered prolonged bouts of ill-health as a child.

When he was eighteen, his mother died and his father’s health began to fail. Watt travelled to London to study instrument-making for a year, then returned to Scotland, settling in Glasgow intent on setting up his own instrument-making business. He made and repaired brass reflecting quadrants, parallel rulers, scales, parts for telescopes, and barometers, among other things. However Because he had not served at least seven years as an apprentice, the Glasgow Guild of Hammermen (which had jurisdiction over any artisans using hammers) blocked his application, despite there being no other mathematical instrument makers in Scotland. However the arrival of astronomical instruments, bequeathed by Alexander Macfarlane to the University of Glasgow which required expert handling, Allowed Watt to bypass this stalemate. These instruments were eventually installed in the Macfarlane Observatory. He was offered the opportunity to set up a small workshop within the university by two of the professors, the physicist and chemist Joseph Black and Adam Smith. At first he worked on maintaining and repairing scientific instruments used in the university, helping with demonstrations, and expanding the production of quadrants. In 1759 he formed a partnership with John Craig, an architect and businessman, to manufacture and sell a line of products including musical instruments and toys. This partnership lasted for the next six years, and employed up to sixteen workers.

While working as an instrument maker at the University of Glasgow, Watt became interested in the technology of steam engines After noticing the steam from a boiling kettle forced the lid to move. His friend, John Robison, then suggested steam could be used as a source of motive power. He realized that contemporary steam engine designs wasted a great deal of energy by repeatedly cooling and reheating the cylinder. Watt introduced a design enhancement, the separate condenser, which avoided this waste of energy and radically improved the power, efficiency, and cost-effectiveness of steam engines. Eventually he adapted his engine to produce rotary motion, greatly broadening its use beyond pumping water. Watt dramatically improved on the efficiency of Thomas Newcomen’s 1712 Newcomen steam engine with his Watt steam engine in 1781, which was fundamental to the changes brought by the Industrial Revolution in both his native Great Britain and the rest of the world.

The design of the Newcomen engine, in use for almost 50 years for pumping water from mines, had hardly changed from its first implementation. Watt began to experiment with steam, though he had never seen an operating steam engine. He tried constructing a model. He realised the importance of latent heat—the thermal energy released or absorbed during a constant-temperature process—in understanding the engine, which, unknown to Watt, his friend Joseph Black had previously discovered some years before. In 1763, Watt was asked to repair a model Newcomen engine belonging to the university. Even after repair, the engine barely worked. After much experimentation, Watt demonstrated that about three-quarters of the thermal energy of the steam was being wasted heating the engine cylinder on every cycle. Watt decided to condense the steam in a separate chamber apart from the piston, and to maintain the temperature of the cylinder at the same temperature as the injected steam by surrounding it with a “steam jacket.Thus very little energy was absorbed by the cylinder on each cycle, making more available to perform useful work. Sadly Watt had financial difficulties constructing a full scale engine to demonstrate his findings. Luckily backing came from John Roebuck, the founder of the celebrated Carron Iron Works near Falkirk, with whom he now formed a partnership. Roebuck lived at Kinneil House in Bo’ness, during which time Watt worked at perfecting his steam engine, however the Piston and cylinder could not be manufactured with sufficient precision. Watt also worked first as a surveyor, then as a civil engineer for eight years to finance his work. Sadly

Sadly Roebuck went bankrupt, however salvation came in the form of Matthew Boulton, who owned the Soho Manufactory works near Birmingham, and acquired his patent rights. Through Boulton, Watt finally had access to some of the best iron workers in the world. The difficulty of the manufacture of a large cylinder with a tightly fitting piston was solved by John Wilkinson, who had developed precision boring techniques for cannon making at Bersham, near Wrexham, North Wales. Watt and Boulton formed a hugely successful partnership (Boulton and Watt) which lasted for the next twenty-five years.In 1776, the first engines were installed and working in commercial enterprises. These first engines were used to power pumps and produced only reciprocating motion to move the pump rods at the bottom of the shaft. The design was commercially successful, and for the next five years Watt installed more engines, mostly in Cornwall for pumping water out of mines. These early engines were not manufactured by Boulton and Watt, but were made by others according to drawings made by Watt, who served in the role of consulting engineer. The field of application for the invention was greatly widened when Boulton urged Watt to convert the reciprocating motion of the piston to produce rotational power for grinding, weaving and milling. Although a crank seemed the obvious solution to the conversion Watt and Boulton were stymied by a patent for this, whose holder, James Pickard, and associates proposed to cross-license the external condenser. Watt adamantly opposed this and they circumvented the patent by their sun and planet gear in 1781.

Watt made a number of other improvements and modifications to the steam engine. Such as A double acting engine, in which the steam acted alternately on the two sides of the piston. He also described methods for working the steam “expansively” (i.e., using steam at pressures well above atmospheric). He designed A compound engine, which connected two or more engines, a steam indicator which prevented these primative boilers from exploding and parallel motion which was essential in double-acting engines as it produced the straight line motion required for the cylinder rod and pump, from the connected rocking beam, whose end moves in a circular arc. He also created a throttle valve to control the power of the engine, and a centrifugal governor, all of which made his Steam Engines far more efficient than the Newcomen Engine. In order to minimaze the risk of exploding boilers, Watt restricted his use of high pressure steam and all of his engines used steam at near atmospheric pressure. Watt entered a partnership with Matthew Boulton in 1775. The new firm of Boulton and Watt was eventually highly successful and Watt became a wealthy man.

Watt retired in 1800, the same year that his fundamental patent and partnership with Boulton expired. The famous partnership was transferred to the men’s sons, Matthew Robinson Boulton and James Watt Jr. Watt continued to invent other things before and during his semi-retirement though none was as significant as his steam engine work. He invented and constructed several machines for copying sculptures and medallions. He maintained his interest in civil engineering and was a consultant on several significant projects. He proposed, for example, a method for constructing a flexible pipe to be used for pumping water under the Clyde at Glasgow. He and his second wife travelled to France and Germany, and he purchased an estate in mid-Wales at Doldowlod House, one mile south of Llanwrthwl. In 1816 he took a trip on the paddle-steamer Comet, a product of his inventions, to revisit his home town of Greenock. James Watt’s improvements to the steam engine converted it from a prime mover of marginal efficiency into the mechanical workhorse of the Industrial Revolution. The availability of efficient, reliable motive power made whole new classes of industry economically viable, and altered the economies of continents. This brought about immense social change, attracting millions of rural families to the towns and cities.

English novelist Aldous Huxley (1894–1963) wrote of Watt; “To us, the moment 8:17 A.M. means something – something very important, if it happens to be the starting time of our daily train. To our ancestors, such an odd eccentric instant was without significance – did not even exist. In inventing the locomotive, Watt and Stephenson were part inventors of time.”

Watt Sadly died on 25 August 1819 at his home “Heathfield” in Handsworth, Staffordshire (now part of Birmingham) at the age of 83. He was buried on 2 September in the graveyard of St Mary’s Church, Handsworth. However he received many honours for his pioneering work during his lifetime. In 1784 he was made a fellow of the Royal Society of Edinburgh, and was elected as a member of the Batavian Society for Experimental Philosophy, of Rotterdam in 1787. In 1789 he was elected to the elite group, the Smeatonian Society of Civil Engineers. In 1806 he was conferred the honorary Doctor of Laws by the University of Glasgow. The French Academy elected him a Corresponding Member and he was made a Foreign Associate in 1814. The watt is named after James Watt for his contributions to the development of the steam engine, and was adopted by the Second Congress of the British Association for the Advancement of Science in 1889 and by the 11th General Conference on Weights and Measures in 1960 as the unit of power incorporated in the International System of Units (or “SI”).Boulton and Watt also feature on a Bank of England £50 note. the two industrialists pictured side by side with images of Watt’s steam engine and Boulton’s Soho Manufactory. Quotes attributed to each of the men are inscribed on the note: “I sell here, sir, what all the world desires to have—POWER” (Boulton) and “I can think of nothing else but this machine” (Watt). In 2011 he was one of seven inaugural inductees to the Scottish Engineering Hall of Fame.

Metropolitan Railway

The Metropolitan Railway (also known as the Met opened on 10 January 1863 between Farringdon Station and London Paddington Station. It served London from 1863 to 1933, its main line heading north-west from the capital’s financial heart in the City to what were to become the Middlesex suburbs. Its first line connected the main-line railway termini at Paddington, Euston, and King’s Cross to the City. The first section was built beneath the New Road using the “cut-and-cover” method between Paddington and King’s Cross and in tunnel and cuttings beside Farringdon Road from King’s Cross to near Smithfield, near the City. It opened to the public on 10 January 1863 with gas-lit wooden carriages hauled by steam locomotives, and became the world’s first passenger-carrying designated underground railway.

The line was soon extended from both ends, and northwards via a branch from Baker Street. It reached Hammersmith in 1864, Richmond in 1877 and completed the Inner Circle in 1884, however the most important route was the line north into the Middlesex countryside, where it stimulated the development of new suburbs. Harrow was reached in 1880, and the line eventually extended to Verney Junction in Buckinghamshire, more than 50 miles (80 kilometres) from Baker Street and the centre of London.

Electric traction was introduced in 1905 and by 1907 electric multiple units operated most of the services, though electrification of outlying sections did not occur until decades later. Unlike other railway companies in the London area, the Met developed land for housing, and after World War I promoted housing estates near the railway using the “Metro-land” brand. On 1 July 1933, the Met was amalgamated with the Underground Electric Railways Company of London and the capital’s tramway and bus operators to form the London Passenger Transport Board. Former Met tracks and stations are used by the London Underground’s Metropolitan, Circle, District, Hammersmith & City, Piccadilly, and Jubilee lines, and by Chiltern Railways.

The Big Four

The Big Four Railway Companies were created in the United Kingdom On 1 January 1923. This involved almost all the railway companies in Britain including the Great Western Railway, the London and North Eastern Railway, the London, Midland and Scottish Railway and the Southern Railway companies being grouped into Four larger companies. A number of other lines, already operating as joint railways, remained separate from the Big Four; these included the Somerset and Dorset Joint Railway and the Midland and Great Northern Joint Railway. The “Big Four” were joint-stock public companies and they continued to run the railway system until 31 December 1947. The LNER Class A4 streamlined express trains of the 1930s offered a high-speed alternative to road transport.

However competition from road transport during the 1920s and 1930s greatly reduced the revenue available to the railways, even though the needs for maintenance on the network had never been higher, as investment had been deferred over the past decade. Rail companies accused the government of favouring road haulage through the construction of roads subsidised by the ratepayer, while restricting its ability to use flexible pricing because it was held to nationally-agreed rate cards. The government response was to commission several inconclusive reports; the Salter Report of 1933 finally recommended that road transport should be taxed directly to fund the roads and increased Vehicle Excise Duty and fuel duties were introduced. It also noted that many small lines would never be likely to compete with road haulage. Although these road pricing changes helped their survival, the railways entered a period of slow decline, owing to a lack of investment and changes in transport policy and lifestyles. During the Second World War, the companies’ managements joined together, effectively operating as one company. Assisting the country’s ‘war effort’ put a severe strain on the railways’ resources and a substantial maintenance backlog developed. After 1945, for both practical and ideological reasons, the then Labour government decided to bring the rail service into the public sector.

So On 1 January 1948, the railways were nationalised to form British Railways (latterly “British Rail”) under the control of the British Transport Commission.Though there were few initial changes to the service, usage increased and the network became profitable. Regeneration of track and stations was completed by 1954. In the same year, changes to the British Transport Commission, including the privatisation of road haulage, ended the coordination of transport in the UK. Rail revenue fell and, in 1955, the network again ceased to be profitable. The mid-1950s saw the hasty introduction of diesel and electric rolling stock to replace steam in a modernisation plan costing many millions of pounds but the expected transfer back from road to rail did not occur and losses began to mount. This failure to make the railways more profitable through investment led governments of all political persuasions to restrict rail investment to a drip feed and seek economies through cutbacks.

This desire for profitability led to a major reduction in the network during the mid-1960s. Dr. Richard Beeching was given the task by the government of re-organising the railways (“the Beeching Axe”). This policy resulted in many branch lines and secondary routes being closed because they were deemed uneconomic. The closure of stations serving rural communities removed much feeder traffic from main line passenger services. The closure of many freight depots that had been used by larger industries such as coal andiron led to much freight transferring to road haulage. The closures were extremely unpopular with the general public at that time and remain so today. Passenger levels decreased steadily from the late fifties to late seventies. However Passenger services then experienced a renaissance with the introduction of the high-speed Intercity 125 trains in the late 1970s and early 1980s.The 1980s saw severe cuts in government funding and above-inflation increases in fares, but the service became more cost-effective.

Between 1994 and 1997, British Rail was privatised Ownership of the track and infrastructure passed to Railtrack, passenger operations were franchised to individual private sector operators (originally there were 25 franchises) and the freight services sold outright (six companies were set up, but five of these were sold to the same buyer). The Conservative government under John Major said that privatisation would see an improvement in passenger services, however the railways continue to have problems, although many lines that were originally closed by by Doctor Richard Beeching have since become popular Heritage lines and have experienced a resurgence in popularity.

George Jackson Churchward

Best Known for designing GWR 3440 City of Truro, which held the unofficial record for the first steam locomotive to travel at over 100 miles per hour, British railroad engineer George Jackson Churchward sadly died 19 December 1933. He was Born 31st January 1857, and was Apprenticed in the Newton Abbot works of the South Devon Railway in the GWR’s Swindon Works, and rose from draughtsman through several positions, including Carriage Works Manager, and in 1897 was appointed Chief Assistant to William Dean. After 5 years as Chief Assistant, he succeeded Dean as Locomotive Superintendent. In the 19th and early 20th century, railway companies were fiercely competitive. Speed meant revenue and speed was dependent on engineering. Churchward delivered to the GWR from Swindon a series of class-leading and innovative locomotives. Arguably, from the early 1900s to the 1920s the Great Western’s 2-cylinder and 4-cylinder 4-6-0 designs were substantially superior to any class of locomotive of the other British railway companies. On one occasion, the GWR’s directors confronted Churchward, and demanded to know why the London and North Western Railway were able to build three 4-6-0 locomotives for the price of two of Churchward’s “Stars”. Churchward allegedly gave a terse response: “Because one of mine could pull two of their bloody things backwards!”

Churchward preferred locomotives without trailing wheels, to maximise adhesion on the South Devon banks of Dainton, Rattery and Hemerdon on the West of England mainline to Plymouth, then the Great Western’s most important route. Due to the weight and dimensional restrictions required to pass over all the GWR’s lines, he designed narrow fireboxes, but with good circulation. Combining high boiler pressures with superheating made efficient use of the high calorific-value steam coal from the mines in South Wales. Other refinements included feed-water distribution trays beneath the top-fitted clack boxes to minimize boiler stress and large bearing surfaces to reduce wear. Churchward also made advancements in carriage design. He introduced the GWR’s first steel-roofed coaches and is also credited with introducing to Britain several refinements from American and French steam locomotive practice. Among these were the tapered boiler and the casting of cylinders and saddles together, in halves. His choice of outside cylinders for express locomotives was also not standard in Britain for that time. Many elements of British practice were retained, of course. His locomotives for the most part used British plate frames, and the crew was accommodated in typical British fashion. The selection of a domeless boiler was more common to Britain than to the U.S. In 1922 Churchward retired, and C. B. Collett inherited his legacy of excellent, standardised designs. These designs influenced British locomotive practice to the end of steam. Major classes built by the LMS and even British Railways 50 years later are clearly developments of Churchward’s basic designs. The LMS Stanier Class 5 4-6-0 and the BR standard class 5 are both derived from his Saint class early examples of which date to 1902.

 

The first class of locomotives with which Churchward won success and worldwide recognition was the 4-4-0 ‘City’ class, which soon became one of the most famous class locomotives in the world at the time. One of them, City of Truro, became the first engine in the world to haul a train at 100 miles per hour in 1904 (although unauthenticated). He went on to build the ‘County’ class and the ‘Star’ class. Number 3440 City Of Truro is a Great Western Railway (GWR) 3700 (or ‘City’) Class 4-4-0 locomotive, designed by George Jackson Churchward and built at the GWR Swindon Works in 1903. (It was rebuilt to a limited extent in 1911 and 1915, and renumbered 3717 in 1912). It is one of the contenders for the first steam locomotive to travel in excess of 100 miles per hour (160.9 km/h). City of Truro was timed at 8.8 seconds between two quarter-mile posts whilst hauling the “Ocean Mails” special from Plymouth to London Paddington on 9 May 1904. This timing was recorded from the train by Charles Rous-Marten, who wrote for The Railway Magazine and other journals. If exact (Rous-Marten’s stopwatch read in multiples of 1/5 second), this time would correspond to a speed of 102.3 mph (164.6 km/h), while 9 seconds would correspond to exactly 100 mph.Its maximum speed has been the subject of much debate over the years.

Oliver Postgate

Influential and Prolific English Animator Oliver Postgate sadly died in Broadstairs on 8 December 2008, aged 83. He was born in Hendon, Middlesex, England, on 12 April 1925. He was the younger son of journalist and writer Raymond Postgate and Daisy Lansbury, making him the cousin of actress Angela Lansbury and grandson of Labour politician, and sometime leader, George Lansbury. His other grandfather was the Latin classicist John Percival Postgate. His brother was the microbiologist and writer John Postgate FRS. Postgate was educated at the private Woodstock School on Golders Green Road in Finchley in north-west London and Woodhouse Secondary School, formerly known from 1923 onwards as Woodhouse Grammar School, also in Finchley (and now renamed Woodhouse College), followed by Dartington Hall School, a progressive private boarding school in Devon.

In 1942 Postgate joined the Home Guard while studying at Kingston College of Art, but when he became liable for military service during the Second World War the following year, he declared himself a conscientious objector, as his father had done during the First World War. He was initially refused recognition; he accepted a medical examination as a first step to call up, and then reported for duty with the Army in Windsor, but refused to put on the uniform. He was court-martialled and sentenced to three months in Feltham Prison. This qualified him to return to the Appellate Tribunal, where he was granted exemption conditional upon working on the land or in social service, the unserved portion of his sentence being remitted. He worked on farms until the end of the war, when he went to occupied Germany, working for the Red Cross in social relief work.

On return to the UK, from 1948 he attended drama school, but drifted through a number of different jobs, never really finding his niche. In 1957 he was appointed a stage manager with Associated-Rediffusion, which then held the ITV franchise for London. Attached to the children’s programming section, he thought he could improve upon the low budget black and white television productions. Postgate wrote Alexander the Mouse, a story about a mouse born to be king. Using an Irish-produced magnetic system – on which animated characters were attached to a painted background, and then photographed through a 45-degree mirror – he persuaded Peter Firmin, who was then teaching at the Central School of Art, to create the background scenes.

After the success of Alexander the Mouse, Postgate agreed a deal to make the next series on film, for a budget of £175 per programme. Making a stop motion animation table in his bedroom, he wrote the Chinese story The Journey of Master Ho. This was intended for deaf children, a distinct advantage in that the production required no soundtrack which reduced the production costs. He engaged an honorary Chinese painter to produce the backgrounds, but as the painter was classical Chinese-trained he produced them in three-quarters view, rather than in the conventional Egyptian full-view manner used for flat animation under a camera which made the characters look short in one leg, but the success of the production provided the foundation for Postgate with Firmin to start up his own company solely producing animated children’s programmes.

Postgate and Firmin Set up their business in a disused cowshed at Firmin’s home in Blean near Canterbury, Kent, producing children’s animation programmes. Firmin did the artwork and built the models, while Postgate wrote the scripts, did the stop motion filming and many of the voices. This enabled Smallfilms to produce two minutes of film per day, ten times as much as a conventional animation studio, with Postgate moving the cardboard pieces himself, and working his 16mm camera frame-by-frame with a home-made clicker. As Postgate wholly voiced many of the productions, including the WereBear story tapes, his distinctive voice became familiar to generations of children.

They started in 1959 with Ivor the Engine, a series for ITV about a Welsh steam locomotive who wanted to sing in a choir, based on Postgate’s wartime encounter with Welshman Denzyl Ellis, who used to be the fireman on the Royal Scot. (It was remade in colour for the BBC in 1976 and 1977.) This was followed by Noggin the Nog for the BBC, which established Smallfilms as a reliable source to produce children’s entertainment, when there were only two television channels in the UK. Postgate would go to the BBC once a year, show them the completed films and they would say: “Yes, lovely, now what are you going to do next?” We would tell them, and they would say: “That sounds fine, we’ll mark it in for eighteen months from now”. Postgate had strict views on story-line development, affecting each particular series development. The Clangers adventures were surreal but logical. Postgate disliked fantasy for its own sake and felt that Once things become unbelievable science fiction becomes science nonsense. Everything must be strictly logical aand abide by the laws of physics.

During the 1970s and ’80s Postgate was active in the anti-nuclear campaign, addressing meetings and writing several pamphlets including The Writing on the Sky. In 1986, in collaboration with the historian Naomi Linnell, Postgate painted a 50-foot-long (15 m) Illumination of the Life and Death of Thomas Becket for a book of the same name, which is now in the archive of the Royal Museum and Art Gallery, Canterbury. In 1990 he painted a similar work on Christopher Columbus for a book entitled The Triumphant Failure. A Canterbury Chronicle, a triptych by Postgate commissioned in 1990 hangs in the Great Hall of Eliot College on the University of Kent’s Canterbury campus

Postgate also narrated the six-part BBC Radio 4 comedy series Elastic Planet in 1995. In his later years, he blogged for the New Statesman. in 2003 Postgate narrated Alchemists of Sound, a television documentary about the BBC Radiophonic Workshop. In 2007, he was guest on BBC Radio 4’s Desert Island Discs. He was also a guest on The Russell Brand Show on 19 January 2008 where he discussed the making of Bagpuss and his subsequent work in TV and Film. In 1987 the University of Kent at Canterbury awarded an honorary degree to Postgate, who stated that the degree was really intended for Bagpuss, who was subsequently displayed in academic dress. His autobiography, Seeing Things, was published in 2000.

Postgate had a huge influence and effect on British culture, and was held in great affection for the role his work had played in many people’s lives. His work was widely discussed in the UK media and many tributes were paid to him and his work across the internet. Charlie Brooker dedicated a portion of his Screenwipe show to Oliver Postgate, and the way he influenced his own childhood.